Introduction to Modern Controls, with Illustrations in MATLAB and Python

Introduction to Modern Controls
— with lllustrations in MATLAB and Python

Xu Chen and Masayoshi Tomizuka

June 24, 2024

University of Washington
University of California, Berkeley

Introduction to Modern Controls, with Illustrations in MATLAB and Python

Copyright

Copyright ©Xu Chen and Masayoshi Tomizuka, 2023-
License for Code
The code/software in this book is contained under the @@MIT License.

To view a copy of the CCO code, visit:
http:/ /creativecommons.org/publicdomain/zero/1.0/

Publisher

To cite this material: Xu Chen and Masayoshi Tomizuka, “Introduction to Modern Controls — with Illustrations in
MATLAB and Python,” 2023, ISBN: 9798860587496.

http://creativecommons.org/publicdomain/zero/1.0/

Preface

This book introduces the theory and practice of modern control systems. The emphasis is on using state-space
methods to model, analyze, and control dynamic systems. Topics include state-space modeling and solutions,
stability, controllability and observability, state-feedback control, observers, observer state feedback controls, least
square estimation, Kalman filter, and Linear Quadratic Gaussian optimal control. These topics are discussed in
both continuous- and discrete-time settings throughout the book.

The material in this book is based on many years of teaching experience at the University of Washington and the
University of California, Berkeley. The main sources of the material are:

» ME 232 and ME 233 at the University of California, Berkeley, and
» ME 547 at the University of Washington, Seattle.

This book consists of four parts. Part I introduces the basics of dynamic systems modeling, such as Laplace
and Z transforms, state-space descriptions and realization theory, and how to solve the state equation. Part II
examines the properties of dynamic systems, such as classic and Lyapunov stability theories, controllability,
observability, and the decomposition of an uncontrollable and/or unobservable system. After understanding
these system properties, in Part III, we cover estimation and controls for state-space systems. Chapter 11 centers on
the power of state feedback. Then in Chapter 12, we discuss state observers and observer-state feedback. As a
powerful state-feedback control method, Chapter 13 covers the linear quadratic optimal control algorithm. Part IV
is dedicated to estimation and control of stochastic systems, where the state-space system equations are subject to
input and output stochastic noises. We review first relevant results in probability theory in Chapter 14, building on
which we derive the least square estimation in Chapter 15 and then the discrete- and continuous-time Kalman
filters in Chapter 16. Chapter 17 integrates linear quadratic optimal control with the Kalman filter, to provide the
celebrated Linear Quadratic Gaussian (LQG) Optimal control. At the end of the book, we provide a review of
related linear algebra for controls.

Over three hundred examples, figures, table summaries, and exercises distilled from physical systems supplement
the learning. MATLAB and Python are the primary tools for our numerical demonstrations. When MATLAB
examples appear, complementary Python codes will follow to provide results as equivalent as possible in the
more nascent and open-source computation environment.

All the main codes are available for download on the book website https:/ /mcimp-book.github.io/mcimp /. We
have also provided accompanying slides and lecture recordings — accessible from the same book website.

All the MATLAB demonstrations were performed in MATLAB 2022b, and the Python demonstrations in
Python 3.9.13, using toolboxes SymPy v1.11.1 and python-control v0.9.2. For simple calculations and graphical
illustrations, we use gnuplot, a light-weight command-line driven graphing utility across different operation
systems. The coding commands and results are all provided in an “in-line” fashion, directly embedded in the text
materials. Appendix “How to Install and Run Python” provides a summary of ways to configure Python in
different operation systems.

We are grateful to the many teaching assistants and students who helped typeset problems and proofread course
contents over the years. In particular, we would like to thank Liting Sun for creating some of the drawings in
ITEX and Lingfeng Sun for typesetting the Berkeley ME 233 course reader. Jonas Beachy, Xiaohai Hu, and Marina
Ruediger helped with a few case studies. Their contributions have greatly enhanced the quality of this book.

We hope this book will serve as a useful reference for students and researchers interested in the field of dynamics
and control.

https://mcimp-book.github.io/mcimp/
https://www.sympy.org/en/index.html
https://python-control.readthedocs.io/en/0.9.2/

June 24, 2024
Seattle, Washington
Berkeley, California

About the Authors

Xu Chen is an Associate Professor and holds the Bryan T. McMinn Endowed Research Professorship of Mechanical
Engineering at the University of Washington (UW), Seattle. He obtained his Ph.D. degree in mechanical engineering
from the University of California, Berkeley in 2013, and his bachelor’s degree in mechanical engineering
from Tsinghua University, China in 2008. He researches into dynamic systems, controls, and robotics, to
better understand and engineer smart manufacturing (e.g., with feedback controls, lasers, machine vision,
and nondestructive inspection). He also serves as Director of the Boeing Advanced Research Collaboration
at the UW - an interdisciplinary Boeing-UW partnership for the future of flight. Xu Chen is an alumnus of
the National Academy of Engineering’s 2023 Frontiers of Engineering Symposium, a recipient of the National
Science Foundation CAREER Award, the SME Sandra L. Bouckley Outstanding Young Manufacturing Engineer
Award, the Mechatronic Systems Outstanding Young Researcher Award from the International Federation of
Automatic Control (IFAC) Technical Committee on Mechatronic Systems, the Young Investigator Award from
ISCIE / ASME International Symposium on Flexible Automation, and the inaugural UTC Institute for Advanced
Systems Engineering Breakthrough Award.

Masayoshi Tomizuka received his Ph. D. degree in Mechanical Engineering from the Massachusetts Institute of
Technology in February 1974. In 1974, he joined the faculty of the Department of Mechanical Engineering at the
University of California at Berkeley, where he currently holds the Cheryl and John Neerhout, Jr., Distinguished
Professorship Chair and serves as Associate Dean for the Faculty in the College of Engineering. His current
research interests are optimal and adaptive control, digital control, motion control, and control problems related
to robotics and manufacturing, vehicles and mechatronic systems. He served as Program Director of the Dynamic
Systems and Control Program of the National Science Foundation (2002-2004). He has supervised about 130 Ph. D.
students to completion. He served as President of the American Automatic Control Council (AACC) (1998-99).
He is Honorary Member of the ASME, Life Fellow IEEE, and Fellow of IFAC and the Society of Manufacturing
Engineers (SME). He is the recipient of the J-DSMC Best Paper Award (1995, 2010), the DSCD Outstanding
Investigator Award (1996), the Charles Russ Richards Memorial Award (ASME, 1997), the Rufus Oldenburger
Medal (ASME, 2002), the John R. Ragazzini Award (AACC, 2006), the Richard Bellman Control Heritage Award
(AACC, 2018), the Honda Medal (ASME, 2019) and the Nichols Medal (IFAC, 2020). He is a member of the U.S.
National Academy of Engineering.

Contents

Preface

About the Authors

Contents

1 Introduction
The Power of Controls e e e
Relevant Terminologies
The Objectives and The Meansof Controls
Societies to Learn More about Controls e

11
12
13
14

SysTEM DESCRIPTION

2 Modeling
Methodsof Modeling
Continuous-Time Systems
Discrete-Time Systems L
Example: Atomic Force Microscopy e
Example: Hard Disk Drive and Information Storage

21
2.2
2.3
24
2.5
2.6
27

2.8
2.9

Model Properties
Nonlinear Systems
2.71 Example: Magnetically Suspended Ball
272 Example:WaterTank
273 Example:Pendulum
2.7.4 Example: VehicleSteering o
“All Models are Wrong, but Some are Useful”

Exercise

3 Laplace and Z Transforms

The Laplace Transform e
3.11 TheLaplace ApproachtoODEs
3.1.2 Relevant Properties of the Laplace Transofrm
Inverse Laplace Transform and Partial Fraction Expansion
From Laplace Transform to Transfer Functions
TheZ Transform e
341 Definition. e
3.42 RelevantProperties
3.4.3 Applications to Dynamic Systems L L
From Difference Equation to Discrete-Time Transfer Functions

31

3.2
3.3
34

3.5
3.6
3.7

Recap .
Exercise

iii

10
1
1
14
19
20
20
20
21
21
23
27

29
29
29
36
39
41
45
45
47
52
53
56
57

4 State-Space Description of a Dynamic System

41
4.2
4.3
44

4.5
4.6

The Conceptof States e
General State-Space Descriptions L L
From the State Space to Transfer Functions
Linearization and State-Space Representation of Nonlinear Systems
4.41 State-Space Representation of General Nonlinear Systems
4.4.2 Equilibrium Point and Linearization around an Equilibrium Point
4.4.3 Multivariariate Partial Derivative
444 Example:WaterTank
445 Example: Vehicle Steering L
Recap e
Exercise

5 State-space Realizations: The Canonical Forms

51
52
5.3
54
5.5
5.6
57

Controllable Canonical Form L o
Observable Canonical Form
Diagonal and Jordan Canonical Forms
Discrete-Time LTI Systems and Their State-Space Canonical Forms
Similar Realizations
Recap e
Exercise e

6 Solution of Time-Invariant State-Space Equations

6.1

6.2
6.3

6.4
6.5
6.6

6.7
6.8

Continuous-Time State-Space Solutions
6.11 TheSolutiontoX =ax+bu
6.1.2 Thelrrationalnumbere L L
6.1.3 Fundamental Theorem of Differential Equations
6.1.4 The Solution to n'M-order LTISystemsot v i
Discrete-Time LTI State-Space Solutions
Explicit Computation of the State Transition Matrix e
6.3.1 The Case with Distinct Eigenvalues (Diagonalization)
6.3.2 Physical Interpretations L L L
6.3.3 The Case with Complex Eigenvalues
6.3.4 The Case with Repeated Eigenvalues, via Generalized Eigenvectors
6.3.5 Physical Interpretation L L
Explicit Computation of the State Transition Matrix AX
Transition Matrix via Inverse Transformation
Solutions of Time-Varying State Equations
6.6.1 Continuous-TimeCase e
6.6.2 Discrete-TimeCase e
Recap e
Exercise e

7 Discrete-Time Models of Continuous Systems

7.1
7.2
7.3
7.4

Sampler and Signal Holding
State-Space Models
Transfer-FunctionModels L
Exercise

61
61
62
63
69
69
70
72
74
76
84
84

87
87
90
94
96
98
99
101

103
103
103
105
107
107
111
113
114
115
116
117
120
123
123
125
125
125
126
127

SysTEM PROPERTIES

8 Stability

8.1 Definitions e
8.11 Review of Relevant Functional Analysis
8.1.2 Lyapunov’s Definition of Stability
8.2 Stability of LTISystems
8.21 Method of Eigenvalue Locations
8.2.2 Routh-Hurwitz Criterion for Continuous-Time LTI Systems
8.2.3 Routh-Hurwitz Criterion for Discrete-Time LTI Systems
8.3 Lyapunov’s Approach to Stability L
8.3.1 Stability from an Energy Viewpoint L.
8.3.2 Relevant Mathematical Tools
8.4 Lyapunov Stability Theorems
8.41 Lyapunov Stability for Continuous-Time Systems
8.4.2 Lyapunov Stability for Discrete-Time Systems
85 Recap e
8.6 Exercise e

9 Controllability and Observability

91 BasicConcepts e
9.2 The Case for Discrete-Time Systems
9.21 Controllability
922 Observability e
9.3 The Case for Continuous-Time Systems
9.31 Controllability
9.3.2 Observability
9.4 Transforming Single-Input Controllable Systems Into the Controllable Canonical Form
9.5 Transforming Single-Output Observable Systems Into the Observable Canonical Form
9.6 Recap e
97 EXercise e

10 Kalman Decomposition
101 BasicConcepts
10.2 Kalman Decomposition of Uncontrollable Systems
10.3 Kalman Decomposition of Unobservable Systems
10.4 General Kalman Decomposition, Stabilizability, and Detectability
105 Recap o o e
10.6 BExercise

EstimaTioN AND CONTROL

11 State Feedback
11.1 State Feedback and Eigenvalue Assignments
1111 Dynamic Properties of the Closed-Loop System
11.1.2 Eigenvalue Assignment for Single-Input Systems
11.1.3 Multi-InputSystems
11.2 Numerical Tools e

139

141
141
141
142
144
144
146
147
149
149
150
159
159
166
169
169

171
171
172
172
177
181
181
184
189
191
194
194

197
197
198
205
207
209
210

11.3 OutputFeedback
114 Recap,
11.5 Exercise,

12 Observers and Observer-State Feedback
12.1 Open-Loop Observer
12.2 Continuous-Time Luenberger Observer
12.3 Observer State Feedback Control
12.4 Discrete-Time Observers
12.4.1 Discrete-Time Full State Observer . . .

12.4.2 Discrete-Time Full State Observer with Predictor

12.5 Reduced-Order Observer
126 Recap,
12.7 Exercise

13 Linear Quadratic Optimal Control

13.1 Problem Formulation

13.2 Solution of the Continuous-Time LQ Problem

13.3 Stationary Continuous-Time LQ Problem . . .

13.4 Application and Practice
13.41 ChoosingQandR.
13.4.2 MATLAB and Python Commands . . .
13.4.3 Obtaining P,
13.4.4 Example: Inverted Pendulum on a Cart
13.4.5 Robustness of Stationary LQ Regulators

13.5 Further Development of the Continuous-Time LQ Regulator

13.5.1 Return Difference Equality
13.5.2 Stability Margins of Scalar LQR
13.5.3 The Closed-Loop Eigenvalues
13.5.4 Symmetric RootLocus
13.5.5 Steady-State Property
13.6 Discrete-Time LQ Optimal Control
13.6.1 Introduction of Dynamic Programming

13.6.2 Dynamic Programming for General Optimal Control Problems
13.6.3 Solving Discrete-Time Finite-Horizon LQ Problems via Dynamic Programming
13.6.4 Discrete-Time Stationary LQ Optimal Control
13.7 Further Development of the Discrete-Time LQ Regulator

1371 Obtaining P,
13.7.2 Return Difference Equality
13.7.3 The Closed-Loop Eigenvalues
138 Recap
139 Exercise

StocHAsTIC ESTIMATION AND CONTROL

14 Review of Probability Theory
14.1 Sample Space, Events, and Probability Axioms

223
223
224
233
234
234
234
237
242
242

245
245
246
254
259
259
260
260
262
275
275
275
276
277
278
285
287
287
288
290
293
297
297
297
299
301
305

309

311

14.2
14.3
14.4
14.5

14.6
14.7
14.8

Random Variables, Probability Density, and Moments of Distributions
Example Distributions
Random Vector, Joint Probability and Distribution, Conditional Probability
Discrete-Time Random Process
14.51 Filteringa Random Process L
14.5.2 Filtering a Random Process in the State Space
Continuous-Time Random Process
Recap e
Exercise e

15 Least Square Estimation

15.1
15.2
15.3
15.4
15.5
15.6

General Solution
Solutioninthe GaussianCase e
Properties of Least Square Estimate (GaussianCase)
Example Application of Least Square Estimation
Recap e
Exercise e

16 Stochastic State Estimation and Kalman Filter

l6.1
16.2

16.3

16.4
16.5
16.6
16.7

Review of State Observers e e e
Discrete-Time Stochastic State Estimation
16.2.1 Problem Definition e e
16.2.2 Solution e e e
16.2.3 Discrete-Time Kalman Filter
16.2.4 Steady-State Kalman Filter
16.2.5 Return Difference Equality for Equation16.29
Continuous-Time Stochastic State Estimation
16.3.1 General Continuous-Time Kalman Filter
16.3.2 Steady-State Kalman Filter
16.3.3 Return Difference Equality o L.
Kalman Filter Application: Kinematic Kalman Filter
The Kalman Filter Equations using Other Notation Systems
Recap e
Exercise e e e e

17 Linear Quadratic Gaussian (LQG) Optimal Control

171

17.2
17.3
17.4

Stochastic Control with Exactly Known State
17.11 Stochastic Control with Inexactly Known State
17.1.2 Stationary LOQGProblem
Continuous-Time LQG Problem e e
Recap e
Exercise

18 Further Readings

Appendix: Review of Relevant Linear Algebra

1

Basic Concepts of Matricesand Vectors o L.
11 Matrix Addition and Multiplication L oo L
12 Matrix Transposition L

333
333
334
336
339
344
345

347
347
347
347
349
351

361
364
365
367
367
369
371
373
375

377
377
381
384
385
386
388

391

2 Linear Systems of Equations 395

3 Vector Space, Linear Independence, Basis,and Span 398
4 Matrix Properties 398
41 Rank e 398

42 Rangeand NullSpaces 399

4.3 Determinants e 399

44 Matrix and Linear Equations 400

5 Eigenvalues and Eigenvectors o 400
51 Matrix, Mappings, and Eigenvectors 400

5.2 Computation of Eigenvalue and Eigenvectors 401

5.3 Eigenbase and Diagonalization, 403

54 Similarity Transformation o L L 405

6 MatrixInversion 406
6.1 Block Matrix Decomposition and Inversion 408

6.2 LU and Cholesky Decomposition 409

6.3 Determinant and Matrix Inverse Identity 410

7 Spectral Mapping Theorem L 412
8 Matrix Exponential 413
9 ImmerProduct 414
9.1 Inner ProductSpaces 414

9.2 Trace (Standard Matrix Inner Product) 415

10 Vector Norms 415
11 Symmetric and Orthogonal Matrices 416
12 Positive-Definite Matrices 417
121 Definitions and Basic Properties Lo o L oo 417

12.2 General Positive-Definite Matrices 418

12.3 Positive-Definite Functions L o o Lo 419

13 Singular Value Decomposition (SVD) o o 419
131 Motivation 419

13.2 MainResult 420

13.3 Properties of Singular Values L o 422

14 Induced Matrix Norm 422
Appendix: How to Install and Run Python 425

Alphabetical Index 429

List of Figures

11
1.2
1.3
14
15
1.6
17

21
2.2
2.3
24
2.5
2.6
27
2.8
2.9
2.10
211
212
213
214
215

31
3.2
3.3
3.4
3.5
3.6
3.7
3.8

51
5.2
5.3
5.4
5.5
5.6

6.1
6.2
6.3

A general block diagram. 2
Anopen-loop control system. L 2
A closed-loop heating controlexample. oL L 3
Control system with feedforward control. 0 L. 3
Overview of book topics from system description to estimation and controls. 4
Structure of digital control systems. L L 4
Design approaches of digital control systems. 5
Major components in a hard disk drive.. oo o L oo 9
Example frequency response of the voice coil motor in a hard disk drive.. 10
Isaac Newton. e 11
Schematicof the AFM. 12
Mechanical modelsof an AFM. 13
Control-related components in a hard diskdrive. 14
Baseline model of the VCM componentinan HDD. 15
Schematic structure of dual-stage HDDs. 17
Baseline model of the PZT componentinan HDD. 17
Free-body diagram of a magnetically suspended ball. 20
Water flowinatank. 20
Free-body diagram of a pendulum system. L o L oL 21
Kinematic modelling of the four-wheel vehicle steering system. 21
The bicycle model of the vehicle steering system. 22
Example frequency responses of the voice coil motor stage in a batch of hard disk drives. 24
The Laplace approach to ODEs. 30
Pierre-Simon Laplace. 30
Ilustration of piecewise continuous functions., 31
Mlustration of exponential order. L 31
Ilustration of the Dirac impulse function. 33
Approximation of the unit-step function. L o0 o Lo 34
Approximation of the Dirac-delta function. 35
Toward smoother approximations of the unit-step function. 36
Transforming between transfer functions and state-space realizations 87
Block diagram of the controllable canonical form for third-order systems. 89
Block diagram of the observable canonical form for third-order systems. 91
Block diagram of the diagonal realization for third-order systems with distinct poles. 94
Block diagram of the Jordan form realization for third-order systems with repeated poles. 95
Block diagram of the modified canonical form for third-order systems with complex poles. k, =

Brao)/wand ks =a. L 96
The concept of the time constant. L L 105
The unit-step response of a first-order system. L. 105
Convergence of the infinite series X% L toe. L 106

6.4 Example state trajectory for a second-order system under different initial conditions. 116
6.5 Map of eigenvalue and associated response mode (continuous-time case). 121
6.6 Map of eigenvalue and associated response mode (discrete-time case). 122
71 Ilustrationofasampler. e 129
72 MustrationofaZOH. e 130
7.3 Mustrationofafast ZOH. e 130
7.4 A continuous-time state-space system preceded by zero orderhold. 130
7.5 Continuous-time transfer function preceded by a zero orderhold. 133
7.6 Discretization of the voice coil motor models in HDDs under different sampling time. 136
8.1 Example continuous functions. L L L 142
8.2 A uniformly continuous function. L Lo L Lo 142
8.3 A continuous but not uniformly continuous function. oo o000 142
8.4 Stability concepts in the sense of Lyapunov. o o oL L 143
8.5 Time-domain plot of function tet. 145
8.6 The bilinear transform maps the closed left half plane to the closed unitdisk. 148
8.7 A positive-definite function W (x1, xp) = x% + x%. 158
8.8 Alocally positive-definite function W (x1, x2) = x% FSINZ X0e o o e e 159
91 ArthurCayley. e 173
9.2 William Hamilton. 174
111 TIllustration of state-feedback control. L 213
121 Conceptof aclosed-loop observer. e 224
12.2 Realization of the Luenberger observer. 224
12.3 Block diagram of observer state feedback control. o oo oL 233
12.4 Block diagram of the continuous-time reduced-order observer. 239
12.5 Block diagram of reduced-order observer: implementation form. 240
. . 10
131 LQ example with small penalty on control. P* (0) = 0 1l R=00001................. 251
. . . 1 0
13.2 LQ example with medium penalty on control. P* (0) = 0 1l R=1.................. 252
. . 10
13.3 LQ example with large penalty on control. P* (0) = 0 1l R=100 253
. . 20 0
13.4 LQ example with large penalty on control. P* (0) = 0 ol R=100.................. 253
13.5 State trajectories of an inverted pendulum on a cart under full-state LQ optimal control. 266
13.6 State trajectories of a linearized inverted pendulum on a cart under full-state LQ optimal control. . . 268
13.7 State trajectories of a linearized inverted pendulum on a cart under observer-state LQ control. . .. 271
13.8 State estimation errors of a linearized inverted pendulum on a cart under observer-state LQ control. 272
13.9 State estimation errors of a linearized inverted pendulum on a cart under observer-state LQ control. 274
13.10 Block diagram of the optimal LQ system. oo o 275
13.11 Frequency response of the continuous-time LQ loop transfer function. 277
13.12 Frequency response of the discrete-time LQ loop transfer function. 299
14.1 Probability density function of a uniform distribution. 0 0L 313

14.2
14.3
14.4
14.5

15.1
15.2
15.3

16.1
16.2
16.3
16.4
16.5
16.6

16.7

171

O k= W N =

Probability density function of a Gaussian distribution. 314
Distribution of the addition of two uniformly distributed random variables. 315
Distribution of the addition of three uniformly distributed random variables. 316
[lustration of a discrete-time random process. 320
Geometric interpretation of the least square estimator E [x| y] e 336
Geometric interpretation of the least square estimator E [x| v, z] where y and z are uncorrelated. . . 337
Geometric interpretation of the least square estimator E [x| v, z] where y and z are correlated. . . . 339
Rudolf Kalman. e 347
Block-diagram representation of the corrector and predictor form of the Kalman filter. 351
State estimation by Kalman filter and finite settling time observer (FSTO) withr =2. 355
Performance of the Kalman filter and finite settling time observer (FSTO). 356
A closed-loop return-difference representation of the Kalman filter. 362
Block diagram of the return difference in a Kalman filter (u(f) = 0 or the forced response has been

subtracted). e 368
Example eigenvalues of a second-order Kalman filter. 369
Structure of the LOG control scheme. L o 384
Example relationship between xand Ax.o o Lo oo 401
Decomposition of X.. 401
Construction of Ax. 401
Example pointsin vector space 1. L L 405
The same pointsin vectorspace 2. 405

List of Tables

3.1
3.2
3.3

3.4

6.1
6.2
6.3

7.1

8.1
8.2
8.3
8.4

8.5

Common Laplace transforms. 39
Common properties of the Z transform. L 0 o 50
Table of Laplace and Z transforms [5]. x(¢t) = 0 for t < 0. x(kT) = x(k) = 0 for k < 0. Unless otherwise

noted, k =0,1,2,3, e 51
Comparison of continuous- and discrete-time transfer functions. 54
Common pairs of | and | s 123
Summary of solutions to state equations. L oL Lo 123
Common state-transition matrices. L L 127
Zero order hold equivalents of continuous-time transfer functions. 135
Stability of the originfor X = Ax. 145
Stability of the originfor x (k +1) = Ax (k). 146
Analogy between symmetric, skew-symmetric, and orthogonal matrices and the complex plane. . . . 154
Analogy between symmetric, skew-symmetric, orthogonal, and positive-definite matrices and the

complexplane. 157
Summary of Lyapunov equations in continuous- and discrete-time dynamics. 169

9.1 Controllability and observability gramians and their relation to Lyapunov Equations. 194
13.1 Summary of continuous- and discrete-time LQ optimal-control properties. 304

16.1 Comparison of the estimation error covariances (diagonal entries) between a Kalman filter and a finite
settling time observer. 355

Introduction

1.1 The Power of Controls

Our internal body temperature is regulated around the normal value of
about 37° C or 98.6° F. A part of our brain called the hypothalamus checks
our current temperature and compares it with the normal value. In a sauna
room where the temperature is too high, sweat is produced to cool the
skin,! and the blood vessels under our skin get wider to increase the blood
flow to the skin.2 On the other hand, when building a snowman outside,
the blood vessels under our skin become narrower to decrease blood flow
to the skin, retaining heat near the warm inner body; muscles, organs, and
brain produce heat (e.g., muscles can produce heat by shivering); and our
thyroid gland releases hormones to increase our metabolism.? 4 That is the
power of feedback controls: it allows us to make a precision device out of a
crude one that works well even in changing environments.

We also use prediction and feedforward controls in our regulation of body
temperature: as kids, we had learned to wear T-shirts in summer, long
sleeves and coats in winter. With such predictive and feedforward controls,
the burden of feedback control is greatly lifted.

Using these temperature-control activities, fine-tuned naturally as we
grow, our body can respond to internal and external stimuli and make
adjustments to keep the body within one or two degrees of the normal
temperature, whether in summer or winter, at the north pole or in the
Sahara Desert!

1.2 Relevant Terminologies

More formally, feedback is the use of information of the past or the present
to influence behaviors of a system. A system is an interconnection of
elements and devices for a desired purpose. In your undergraduate control
course, you have obtained basic understandings of a control system with
concepts such as transfer functions, proportional integral derivative (PID)
controllers, and frequency responses in classic control. Below, we provide
a brief review of the key concepts and terminologies.

We use a block diagram such as the one in Figure 1.1 to visualize the
system structure and the interconnection of system components. Here, the
plant consists of: (i) a process whose output is to be controlled and (ii) an
actuator — a physical device capable to influence the controlled variable
of the process. The sensor measures the output of the plant and feeds it
back to be compared to a reference signal. The error after the comparison
then drives the controller to generate the command for the actuator. It
is not uncommon to have an input filter that shapes the reference signal:
for example, in controlling the body temperature, we wear clothes of

1.1 The Power of Controls 1
1.2 Relevant Terminologies . .. 1
1.3 The Objectives and The

Means of Controls 3

1.4 Societies to Learn More
about Controls 5

1: The middle layer of the skin, or dermis,
stores most of the body’s water. When the
temperature is too high, that water, along
with the body’s salt, are brought to the
surface of the skin as sweat. On the skin
surface, the water evaporates and cools
the body.

2: This process is called vasodilatation.

3: The three mechanisms are called vaso-
constriction, thermogenesis, and hor-
monal thermogenesis, respectively.

4: We are continuously losing heat:
The Basal Metabolic Rate (BMR) is the
number of calories we burn as our body
performs basic (basal) life-sustaining
function. An average man has a BMR
of around 7,100 kJ per day, while an
average woman has a BMR of around
5900 k] per day. See more at https:
/ /www.betterhealth.vic.gov.au/health/
conditionsandtreatments/metabolism.

https://www.betterhealth.vic.gov.au/health/conditionsandtreatments/metabolism
https://www.betterhealth.vic.gov.au/health/conditionsandtreatments/metabolism
https://www.betterhealth.vic.gov.au/health/conditionsandtreatments/metabolism

2 1 Introduction

Figure 1.1: A general block diagram.

If the mechanism of transient and delay
is not correctly taken into account, the
feedback controller may over compensate
or pump in an excessive amount of control
energy, resulting in system instability.

Figure 1.2: An open-loop control system.

Disturbance

Reference + | 3
——{ Input filter ——()~{ Controller —| Actuator [~ Process [—
I

Sensor

T

Sensor noise

different thickness and warmth that build a buffer between our skin and
the environment.

In our introductory example, the body cannot immediately adjust the
temperature. Instead, it is an intricate dynamic process — blood vessels
expand and contract to move blood and heat closer to or further away
from the skin, thus releasing or conserving warmth. Dynamic systems do
not show the full effect of the input immediately but after some transient
and/or delays.

The inputs and outputs in a dynamic system are signals, i.e., they are
functions of time, e.g., speed of a car, temperature in a room, voltage applied
to a motor, price of a stock, and electrical-cardiograph. In practice, there will
be disturbances to the system and noises in the sensor measurement signals.
These are also signals and will negatively influence the performance of the
control system.

An open-loop control system (cf. Figure 1.2) is one where the output of the
plant does not influence the input to the controller.

Disturbance

Desired Output u(t) y(t)
Controller Controlled System ———

A closed-loop system is one where multiple components (plant, controller,
etc) have a closed interconnection. For exampel, in the heating control
system for a house, the thermostat will measure the room temperature,
compare it to the set value, and turn on or off the furnace to keep the house
warm in a closed loop. There is always feedback in a closed-loop system.

Closed-loop (feedback) controllers provide a more robust performance
than open-loop controllers in the presence of disturbances and plant
uncertainties. If the reference signal varies fast and its variation is known
in advance, then feedforward control based on information about the
reference is useful. This is often the case in machine tool control and robot
control. Feedforward control is also effective if the disturbance signal can

1.3 The Objectives and The Means of Controls | 3

Heat Loss

Desired T - Room T
Thermostat —| Gas Valve Furnace House

be measured or estimated. Figure 1.4 shows a control system that integrates
these benefits of feedback and feedforward controls.

Feedforward [*

Controller ! Disturbance
Desined Error
output 4 e(t) [Feedback +X Controlled | ¥(f)
- Controller + Plant
u(t)
Sensors

1.3 The Objectives and The Means of Controls

A few aspects of control objectives are universal. For example, we would
always want our control system to result in closed-loop dynamics that
are stable and insensitive to disturbances. These form the stabilization
problem and the disturbance rejection problem, respectively. When the
reference is a fixed point such as the normal temperature of our body, the
control objective is the regulation of output in the presence of disturbances
and noises. When the reference changes and is time-varying, a tracking
problem is formed.

To achieve the control objectives, the control engineer must model the
controlled plant, analyze the characteristics of the plant, design control
algorithms (controllers), analyze performance and robustness of the control
system, and implement the controller.

To model, analyze, and design control systems, we must be able to describe
systems formally, understand their key properties, and then design esti-
mation and control algorithms. Figure 1.5 provides the essential workflow
of this book covering these topics. In describing a system, we cover topics
from state-space description and system realization theory to linearization
and discretization of system models. We will provide solutions to con-
trol systems from the transfer-function domain to the state-space domain.
Build on the system description and solution concepts, we analyze sys-
tem properties and exploit the importance of stability, controllability, and

Figure 1.3: A closed-loop heating control
example.

Figure 1.4: Control system with feedfor-
ward control.

4 1 Introduction

Figure 1.5: Overview of book topics from
system description to estimation and con-
trols.

Figure 1.6: Structure of digital control sys-
tems.

observability, along with foundational properties such as causality and
linearity. In estimation and controls, we integrate all topics and discuss
the power of control design when certain system properties are met. We
cover state estimation in both the deterministic and the stochastic cases.
We discuss the power of feedback control from arbitrary pole placement of
closed-loop eigenvalues to LQR and LQG optimal feedback control.

stimatjq
T f s

@ O@

(]
Probability Kalman | 2,
Theory Filter —
o
Least

Square
State
Estimation

Discreti- ©
zation

Lo 5pa

Block
Diagram
State
Spa
gpiat 2
System .
Realizatiol Linear &
Nonlinear

Static &
Dynamic

Observa-
bility

Estimate

Controll-
ability

For implementation of controls, control engineers use computers extensively
in both (off-line) analysis/design and (real-time) implementation. Com-
puters are inherently discrete devices. If a computer is used in real-time
control, it receives the output of the controlled plant as a sensor signal
intermittently often at a fixed sampling frequency after an analog to digital
(A/D) converter, computes the right control input and send it out to the
controlled plant, as depicted in Figure 1.6. The discrete control sequence
is then sent to a digital to analog (D/A) converter to form the continuous-
time control command to the plant. From the viewpoint of the computer,
the plant is a discrete-time device that produces a discrete-time output
sequence in response to a control sequence provided by the computer.

Measurable Unmeasurable

disturbance disturbance
I AD <
* Feedback Control Y 8
« Feedforward Controller utput
« State Estimation L —>» DI/IA Controlled Plant
* Noise Filtering
« |dentification/adaptation
< AID [« sensors
Computer i A/D: analog to digital converter

works as a sampler
i D/A: digital to analog converter
works as a data holder

Discrete time domain Continuous time domain

While computers are used in almost all implementation of control, the
controller design, however, may be carried out in the continuous-time

~
N

RS
S

Dynamic equations in

1.4 Societies to Learn More about Controls

Control object

continuous time €
domain (linear)

~

v

Analysis & design in

continuous time
domain

2

Dynamic object
(perhaps nonlinear

Performance evaluation

2

Selection of sampling time

2

Performance evaluation

Figure 1.7: Design approaches of digital control systems.

and complex)

\ Selection
x of

sampling Dynamic equation in

/ tiie N“Discretetimedomain
4

) (linear)

T

‘| Analysis & design in
discrete time domain

Ly

—— Performance evaluation

S S i

Implementation using computer

Design path
Modeling path

Use of math. model

domain or in the discrete-time domain. The choice of the time domain may
depend on many factors such as target systems, control methodologies,
and personal taste. It is important that the control engineers have a broad
knowledge of the analysis and design tools for control systems. For example,
there are many design approaches to digital control systems. Figure 1.7
summarizes typical design approaches that we may follow given a physical
plant. The continuous-time linear control theory and the discrete-time
control theory that we will study will provide us an important and useful

set of tools.

1.4 Societies to Learn More about Controls

Founded in Paris in 1957, the International Federation of Automatic Control
(IFAC, website: https:/ /www.ifac-control.org) is the worldwide organi-
zation tasked with promoting the science and technology of automatic
control in both theory and application. IFAC also disseminate the impact of
control technology on society through its conferences, publications, techni-
cal committees, and journals. IFAC is well known through the editorship

of eight archival journals:

vVvVvyYvyVvYyYVvyy

Automatica,
Control Engineering Practice,
Annual Reviews of Control,
Engineering Applications of Artificial Intelligence,
Journal of Process Control,
Mechatronics,

5

https://www.ifac-control.org

6 1 Introduction

» Nonlinear Analysis: Hybrid Systems, and
» IFAC Journal of Systems and Control.

These are published in partnership with the official IFAC publisher, Elsevier.
Control Engineering Practice and Annual Reviews of Control, for example,
are good starting points that are rich in examples and reviews of recent
advances in controls.

The American Automatic Control Council (AACC, website: www.a2c2.org)
represents the United States to the global control community and is the US
National Member Organization (NMO) of IFAC. AACC helps arrange for
IFAC events in the U.S. and is an association of nine professional societies:

American Institute of Aeronautics and Astronautics (AIAA)
American Institute of Chemical Engineers (AIChE)

American Society of Civil Engineers (ASCE)

American Society of Mechanical Engineers (ASME)

Institute of Electrical and Electronics Engineers (IEEE)

Institute for Operations Research and the Management Sciences
Applied Probability Society (INFORMS APS)

International Society of Automation (ISA)

Society for Industrial and Applied Mathematics (SIAM)

» Society for Modeling and Simulation International (SCS)

vVVvyVvyVvyYyy

vy

AIAA, ASME, and IEEE, for example, publish journals such as

IEEE Control Systems Magazine

IEEE Transactions on Control Systems Technology

IEEE Transactions on Automatic Control

AIAA Journal of Guidance, Control and Navigation

ASME Journal of Dynamic Systems, Measurement and Control

vVvyVvyyvyy

These are good starting good points at AACC to learn more about controls
in both theory and applications.

https://www.a2c2.org

SYSTEM DESCRIPTION

2 Modeling

Modeling of physical systems is a vital component of modern engineering.

After we understand the governing dynamics of a system, we can simulate
and predict system responses, design model-based controllers, and evaluate
system properties.

2.1 Methods of Modeling

The dynamics of many systems often consist of complex coupled differential
or difference equations. Two general approaches exist to extract these system
models. The first and more physics-based approach capitalizes on principles
of physics such as Newton’s laws and energy conservation. The second and
more data-centric approach integrates input-output responses to extract
the system dynamics.!

The most successful modeling often integrates both physics- and data-based
modeling and analysis techniques. We provide an example below.

In a hard disk drive storage system, the main dynamics of the voice coil
motor that rotates the read /write head are governed by Newton’s second
law for rotation:

T = i a
N—— —_—— N——
nettorque . orent of inertia angular acceleration

Let the angular position 0 be the output and 7 be the input. Then the
input-output dynamics follow the formula:

. 1
0=a=-1.
]

2.1 Methods of Modeling ... 9
2.2 Continuous-Time Systems 10
2.3 Discrete-Time Systems . . 11
2.4 Example: Atomic Force
Microscopy 11

2.5 Example: Hard Disk Drive
and Information Storage . 14

2.6 Model Properties 19
2.7 Nonlinear Systems 20
2.8 “All Models are Wrong, but
Some are Useful” 23
29 Exercise 27

1: The field of system identification and
adaptive control is dedicated to such data-
based approach to model and control dy-
namic systems.

Spindle Head

Platter
Actuator Arm

Actuator Axis

Power Connector

Jumper Block
Actuator

IDE Connector

Figure 2.1: Major components in a hard
disk drive.

https:/ /en.wikipedia.org/wiki/
Hard_disk_drive#/media/File:
Hard_drive-en.svg

https://en.wikipedia.org/wiki/Hard_disk_drive#/media/File:Hard_drive-en.svg
https://en.wikipedia.org/wiki/Hard_disk_drive#/media/File:Hard_drive-en.svg
https://en.wikipedia.org/wiki/Hard_disk_drive#/media/File:Hard_drive-en.svg

10 | 2 Modeling

In section 2.5, we discuss details about
how to construct the model in Figure 2.2.

Figure 2.2: Example frequency response

of the voice coil motor in a hard disk drive.

However, hard disk drives are high-speed high-precision (nanometer-
scale!) mechatronic systems. In addition to the above fundamental mode,
at high angular speeds and frequencies, the rotating disks and actuator
arms become no longer rigid, but instead will bend and exhibit high-
order vibration modes. Figure 2.2 shows the frequency response of a
typical voice coil motor in modern hard disk drives. Many vibration modes
appear at high frequencies. The parameters of these modes are not as easy
to obtain analytically. Finite element methods and system identification
become useful here. However, the analysis from physics is still critical to
understand the shapes of these vibration modes.

100 ~

3]
o
T
I

Gain [dB]
o
T

Ny

10t 102 10° 10
Frequency [Hz]

|

270 ‘

Phase [deg.]
—

_360 Il Il Il
10? 102 10° 10*
Frequency [Hz]

2.2 Continuous-Time Systems

Mathematical models of continuous dynamic systems are differential
equations. Here, inputs and outputs of the continuous-time systems are
defined for all ¢, i.e. u(t) and y(f). Continuous linear dynamic systems are
described by linear differential equations in the form of

d"y(t) d"y(t) d"u(t) d™u(t)
FTI +ﬂn_1w+‘ . ‘+Ll0y(t) = bm dm +bm_1w+' . '+b01/l(t),
(2.1)
with the initial conditions y(0) = yo, ..., y"(0) = y(()n), where y™ is a
shorthand of ‘Zf .

Example 2.2.1 (Mass spring damper) Consider a mass spring damper
system:

v position: y(t)

o ——> u=F
- i

- !

h P m

Newton’s second law gives
mij (t) + by (t) + ky (t) = u (t), y(0) = yo, y(0) = yo. (2.2)

The system is modeled as a second-order ordinary differential equation
(ODE) with input #(t) and output y(t).

2.3 Discrete-Time Systems

Inputs and outputs of discrete-time systems are defined at discrete-time
points, i.e. u(k) and y(k), where k = 0,1, 2, Models of discrete dynamic
systems are difference equations in the form of:

y(k+1) :f(]/(k)/y(k—1)/---,y(k—”)/u(k)/u(k—1)/~~/”(k—”))/

where the output at k + 1 depends on the input and output at k, k —
1,..., k—n.

Example 2.3.1 (Banking and Interest Rate) In a bank account, let x(k)
denote the beginning balance at the k-th month, and let u(k) denote the
accumulated deposit/credit or payment/debit during the k-th month).
A discrete dynamic model to describe the balance at the beginning of
every month is

x(k+1)=1+a(k))x(k) + u(k),

where a(k) is the interest rate of the k-th month. This model is used for a
variety of purposes, for example, to predict the balance after 12 months
assuming the interest rate and the pattern of deposit during the period.

2.4 Example: Atomic Force Microscopy

One of the most powerful techniques for imaging nanoscale objects is
Atomic Force Microscopy (AFM). It can reveal the fine details of surfaces
ranging from single molecules to the uneven texture of a glass pane. AFM
has many applications in various fields of research, such as cell biology,
semiconductors, thin film and coatings, tribology (surface and friction
interactions), molecular biology, and energy storage and energy generation
(photovoltaic) materials. The key to the high performance of AFM is the

2.3 Discrete-Time Systems | 11

Figure 2.3: Isaac Newton (1642-1726)
developed Newton's laws in 1686. He is
an extremely brilliant scientist and in the
meantime often known to be eccentric.
He was described as "...so absorbed in his
studies that he forgot to eat".

https:/ /en.wikipedia.org/wiki/
Isaac_Newton#/media/File:
Portrait_of_Sir_Isaac_Newton,_1689‘jpg

https://en.wikipedia.org/wiki/Isaac_Newton#/media/File:Portrait_of_Sir_Isaac_Newton,_1689.jpg
https://en.wikipedia.org/wiki/Isaac_Newton#/media/File:Portrait_of_Sir_Isaac_Newton,_1689.jpg
https://en.wikipedia.org/wiki/Isaac_Newton#/media/File:Portrait_of_Sir_Isaac_Newton,_1689.jpg

12 | 2 Modeling

Figure 2.4: Schematic of the AFM.

[1]: Schitter et al. (2007), Design and Model-
ing of a High-Speed AFM-Scanner

feedback control system that enables precise scanning at the nanometer
level.

The AFM system has two working modes: the tapping mode and the contact
mode. A contact mode AFM system that images a sample surface is shown
in Figure 2.4. The system consists of a cantilever with an atomic-point
needle that scans the sample’s surface. The contact point follows the surface
topology by moving up and down. A laser beam is directed at the cantilever
and is reflected onto a photodiode that measures the beam’s exact location.
Based on this information, a control system can adjust the position of the
cantilever (or the sample under it). The height of the point is recorded as
the surface height at that location. A map of the surface can be created by
combining the heights from the whole scan.

Photodiode La Q

=

Cantilever

The control system aims to maintain a constant force on the sample surface
by the needle tip. The cantilever deflection changes with the force on the
needle, and the photodiode can sense the laser movement. This information
is fed into the control system, which adjusts the sample height to keep the
cantilever deflection at the desired level.

The sample height is controlled by a piezoelectric stack actuator element
(piezo) under the sample. Piezo elements are crystals that deform according
to the electric charge they receive. This deformation is used to move the
sample up or down in the z-direction, to regulate the force on the needle.
Usually, piezoelectric stack actuators are also used to move the sample
in the x and y directions, but since scanning is done at a constant speed
and pattern, these piezo elements do not require the same precision and
bandwidth in their feedback control as the z-direction piezo.

The needle encounters forces on the nanoscale that are not obvious to us.
Forces such as the attractive van der Waals force, which pulls molecules
together, and the repulsive Pauli force, which pushes molecules away,
influence the needle as it moves across the surface, in addition to the
reaction force from the surface. These forces are nonlinear. However,
the major mode of AFM is a spring-mass-damper system. Reference [I]
created two models, one second-order and one fourth-order, to describe
the dynamics of the AFM system simply, and then more accurately.

Figure 2.5 shows the second-order system. Here, M; models the sample
and the upper part of the piezo element, and has a combined mass of
my. My models the lower part of the piezo element and the mass of the
supporting element beneath, with a combined mass of m,. The piezo

2.5 Example: Hard Disk Drive and Information Storage | 13

element resizes due to force F, which affects the two masses at the center
of the piezo element. The supporting element has a spring constant of k
and a damping coefficient of bp. The input to the system is force F, which
is generated by a voltage signal that causes the piezo element to expand
and contract.

] semple — Mm — |m
X1 X,
Piezo 45
Element FH L k1 E b1
Supporting I:J‘> Mz X, M2 X
Structure 2
k, - EZ -
] 5 b,

7

Based on Newton's law, the governing equation of the second-order model
of the AFM here is

dle
fh _p
LETE
dzxz dx; (2.3)
e AN SN
ms by—= —kax2 - F,
I'=x1-2x,

where [is the distance between x; and x; as shown in Figure 2.5.

To account for the piezo element dynamics, we need to modify the system
to a fourth-order model. This is done by adding another spring-damper
component. The final schematic model in Figure 2.5 shows k; as the effective
spring constant and b as the effective damping coefficient of the piezo
element. Force F still affects both masses. The fourth-order model includes
the dynamics of the second-order model and also captures high-order
dynamics observed in the frequency response of a real-world AFM system

[2].

Using first principles in Figure 2.5, when spring and damping effects are
considered between the two masses, the governing equations become:

2
dx —by (& - @) —ki(x1 —x2) + F,

T it dt
dZX2 dxi dxp dxy
my—n =h (g - | Pl —x) —b | == = 0] —kxy - F.

(2.4)

Figure 2.5: Mechanical models of an AFM.

Fourth order is known to be the highest-
order model for an AFM system that pro-
vides benefits in control design. Models
with higher orders do not enhance the
precision much, but instead will increase
the computational cost considerably.

[2]: Schitter et al. (2001), High performance
feedback for fast scanning atomic force micro-
scopes

14 | 2 Modeling

(millions of them on one disk)
Data track

Read/write heads

Figure 2.6: Control-related components
in a hard disk drive.

Read more about the HDD mechatronics
at,e.g.,

1. Hard disk drive - Wikipedia.
https:/ /en.wikipedia.org/wiki/
Hard_disk_drive.

2. Anatomy of a Storage Drive: Hard
Disk Drives | TechSpot. https:
/ /www.techspot.com/article/
1984-anatomy-hard-drive/

Accessed 6/7/2023.
3. Hard disk | Definition
& Facts | Britannica.

https:/ /www.britannica.com/
technology /hard-disk Accessed
6/7/2023.

The example is based on: Takenori

Atsumi (2023), Magnetic-head
positioning control system in
HDDs (https:/ /www.mathworks.

com/matlabcentral /fileexchange /
111515-magnetic-head-positioning-\
control-system-in-hdds), MATLAB
Central File Exchange. Retrieved June 9,
2023.

2.5 Example: Hard Disk Drive and Information
Storage

Hard disk drives (HDDs) are amazing mechanical systems that store and
retrieve digital data using magnetic storage. They consist of one or more
rigid rapidly rotating platters coated with magnetic material, and a read-
write head that moves across the platter surface to access the data. HDDs
were the standard storage system for personal computers for over 30 years
and have been the main storage element in data centers. Their history goes
back to the 1950s when IBM invented the first HDD. Since then, HDDs
have undergone tremendous improvements in terms of capacity, speed,
size, power consumption and reliability.

HDDs are examples of high-precision engineering, as they operate at
nanometer scales and millisecond speeds, while being mass-produced and
affordable. HDDs are also versatile, as they can store any kind of digital
data, from text and images to audio and video. They are truly remarkable
devices that have revolutionized the field of data storage and enabled the
development of modern computing.

In a modern HDD, data is stored in circular patterns of magnetization
known as data tracks or simply, tracks (Figure 2.6). During reading and
writing of the data, the disk spins and the read/write head is controlled to
follow the circular tracks. This creates the track-following problem, where
the servo system performs regulation control to position the read /write
head at the desired track, with as low variance as possible. During track
following, the position errors are measured periodically at servo sectors
that are embedded uniformly over one period of rotation of the disk.
Suppose a disk has a rotational speed of 7200 revolutions per minute
(rpm) and the number of servo sectors are 220. Then at every revolution
of the disks, 220 measurements are obtained, at a sampling frequency of
220 x 7200/60 (= 26,400) Hz.

The actuator in a single-stage HDD is powered by a voice coil motor (VCM).
The dynamics between the input current to the voice coil motor and the
output position error signal of the read /write head include the effects of
inertia, damping, spring constant, and resonant modes of the head assembly.
In Section 2.1, we have seen that by Newton’s law, the dynamics again has
a nominal response of a double integrator. Sometimes, the nominal model
also considers friction effects and is written as a second-order damped
system instead of a pure double integrator. In high precision control,
multiple high-frequency modes are typically present due to structural
resonances (Figure 2.7) and the full-order model of the VCM system is in

the form of: i

G(s)=K >,

5
T 82 +20iwis + w3

Ki

2.5)

The following codes establish a VCM model of a 7200 rpm HDD with 420
servo sectors.

% modeling/hddvcm.m
% MATLAB code to generate a single-stage HDD model

num_sector=420; % Number of sector

https://en.wikipedia.org/wiki/Hard_disk_drive
https://en.wikipedia.org/wiki/Hard_disk_drive
https://www.techspot.com/article/1984-anatomy-hard-drive/
https://www.techspot.com/article/1984-anatomy-hard-drive/
https://www.techspot.com/article/1984-anatomy-hard-drive/
https://www.britannica.com/technology/hard-disk
https://www.britannica.com/technology/hard-disk
https://www.mathworks.com/matlabcentral/fileexchange/111515-magnetic-head-positioning-\control-system-in-hdds
https://www.mathworks.com/matlabcentral/fileexchange/111515-magnetic-head-positioning-\control-system-in-hdds
https://www.mathworks.com/matlabcentral/fileexchange/111515-magnetic-head-positioning-\control-system-in-hdds
https://www.mathworks.com/matlabcentral/fileexchange/111515-magnetic-head-positioning-\control-system-in-hdds

2.5 Example: Hard Disk Drive and Information Storage | 15

10* 102 10° 104
Frequency [Hz]

0 — T — T — T T
. -90
o
@
S
o -180 B
2]
I
<
o

-270 =
-360 H HE | H HE | H D e | H A
1 2 3 4
10 10 10 10 . .
Frequency [Hz] Figure 2.7: Baseline model of the VCM
q y component in an HDD.

num_rpm=7200; % Number of RPM
Ts = 1/(num_rpm/60*num_sector); % Sampling time
% VCM
Kp_vcm=3.7976e+07; % VCM gain

omega_vcm=[0, 5300 ,6100 ,6500 ,8050 ,9600 ,14800 ,17400 ,21000 ,26000

~ ,26600 ,29000 ,32200 ,38300 ,43300 ,44800]*2+*pi;

kappa_vcem=[1, -1.0 ,+0.1 ,-0.1 ,0.04 ,-0.7 ,-0.2 ,-1.0 ,+3.0 ,-3.2
,2.1 ,-1.5 ,+2.0 ,-0.2 ,+0.3 ,-0.5 1;

zeta_vem =[0, 0.02 ,0.04 ,0.02 ,0.01 ,0.03 ,0.01 ,0.02 ,0.02 ,0.012

-~ ,0.007 ,0.01 ,0.03 ,0.01 ,0.01 ,0.01];

Sys_Pc_vem_c1=0;

for i=1:length(omega_vcm)
Sys_Pc_vem_c1=Sys_Pc_vem_c1+tf([0,0,kappa_vem(i)]*Kp_vem, [1,
— 2+*zeta_vcem(i)*omega_vcm(i), (omega_vem(i))~2]);

end

%% Frequency response
f=logspace(1,1log10(60e3),3000);
Fr_Pc_vcm_cl=squeeze(freqresp(Sys_Pc_vcm_cl,f#2*pi)).";

figure

subplot(211)

semilogx (f,20*1ogl10(abs(Fr_Pc_vcm_c1)))

title('P_{cv}');xlabel('Frequency [Hz]');ylabel('Gain

— [dB]");grid;axis([1lel f(end) -90 100])

subplot(212)

semilogx (f,mod(angle(Fr_Pc_vcm_c1)*180/pi+360,360)-360)

xlabel ('Frequency [Hz]');ylabel('Phase [deg.]');grid;axis([1lel f(end)
-360 0]);yticks(-360:90:0)

% if you want, you can save the images as follows:

% saveas(gcf, 'images/hdd_pcvm_baseline.pdf')

% saveas (gcf, 'images/hdd_pcvm_baseline.png')

The Python version of the code is as follows:

16

2 Modeling

modeling/hddvem. py

import numpy as np

import matplotlib.pyplot as plt
from scipy import signal

import control as ct

num_sector = 420 # Number of sector
num_rpm = 7200 # Number of RPM
Ts = 1 / (num_rpm / 60 * num_sector) # Sampling time

VCM
Kp_vem = 3.7976e+07 # VCM gain
omega_vcm = np.array([0, 5300, 6100, 6500, 8050, 9600, 14800, 17400,
21000, 26000, 26600, 29000, 32200, 38300, 43300,
44800]) * 2 * np.pi
kappa_vcem = np.array([1, -1.0, +0.1, -0.1, 0.04, -0.7, -
0.2, -1.0, +3.0, -3.2, 2.1, -1.5, +2.0, -0.2, +0.3,
-0.5])
zeta_vcm = np.array([0, 0.02, 0.04, 0.02, 0.01, 0.03, 0.01,
0.02, 0.02, 0.012, 0.007, 0.01, 0.03, 0.01, 0.01,
0.01])

Sys_Pc_vem_cl = ct.TransferFunction(
[1, [1]) # Create an empty transfer function
for i in range(len(omega_vcm)):
Sys_Pc_vem_cl = Sys_Pc_vem_cl + ct.TransferFunction(np.array(
[0, 0, kappa_vcm[i]]) * Kp_vcm, np.array([1l, 2 * zeta_vem[i] *
omega_vem[i], (omega_vem[i]) #** 2]))

Frequency response

f = np.logspace(1l, np.logl0(60e3), 3000)

w=f * 2 % np.pi

magPc_vcm, phase_Pc_vcm, omega Pc_vcem = ct.freqresp(
Sys_Pc_vcm_cl, w) # Get the frequency response

plt.figure()

plt.subplot(211)

plt.semilogx(f, 20*np.logl0(magPc_vcm))
plt.title('P_{cv}")
plt.xlabel('Frequency [Hz]')
plt.ylabel('Gain [dB]")

plt.grid()

plt.axis([10, f[-1], -90, 100])
plt.subplot(212)

plt.semilogx(f, np.mod(phase_Pc_vcm*180/np.pi+360, 360)-360)
plt.xlabel('Frequency [Hz]')
plt.ylabel('Phase [deg.]')

plt.grid()

plt.axis([10, f[-1], -360, 0])
plt.yticks(np.arange(-360, 90, 90))

With the ever increasing demand of larger capacity in HDDs, dual-stage
actuation using both a VCM and a piezoelectric actuator has become an
essential technique to break the bottleneck of the servo performance in
single-actuator HDDs. A dual-stage HDD applies an additional piezoelec-
tric microactuator (MA) at the end of the VCM actuator, as shown in Figure
2.8. We have discussed how piezoelectric microactuators are useful for
high-precision control in AFMs. The MA stage has much smaller moving
range but greatly improved positioning speed and accuracy. Its dynamical
response is also much easier to control, with the low-frequency dynamics
governed simply by a DC gain (Figure 2.9). Compared to the VCM actuator,

2.5 Example: Hard Disk Drive and Information Storage | 17

the MA has enhanced mechanical performance in the high-frequency
region, providing the capacity to greatly increase the servo bandwidth and
disturbance-attenuation capacity.

Only the position error of the read/write head is measurable in practice.
The plant is hence a dual-input-single-output system.
MA

30 °p

VCM

10 -

Gain [dB]

0 | Figure 2.8: Schematic structure of dual-
stage HDDs.

-10 : : e
10 10
Frequency [Hz]

4

180

90 -

Phase [deg.]
o
|

-180 ‘ ‘]

10° 10* Figure 2.9: Baseline model of the PZT
Frequency [Hz] component in an HDD.

The following codes establish a normalized MA model of a 7200 rpm HDD
with 420 servo sectors.

% modeling/hddpzt.m
% MATLAB code to generate the pzt-stage HDD model

num_sector=420; % Number of sector

num_rpm=7200; % Number of RPM

Ts = 1/(num_rpm/60*num_sector); % Sampling time

% PZT

omega_pzt=[14800 ,21500 ,28000 ,40200 ,42050,44400,46500
,100000]*2%pi;

kappa_pzt=[-0.005,-0.01 ,-0.1 ,+0.8 ,0.3 ,-0.25 ,0.3 ,10.0];

zeta_pzt =[0.025 ,0.03 ,0.05 ,0.008 ,0.008 ,0.01 ,0.02 ,0.3];

Sys_Pc_pzt_c1=0;
for i=1:length(omega_pzt)
Sys_Pc_pzt_cl1=Sys_Pc_pzt_c1+tf([0,0,kappa_pzt(i)],[1,
2#zeta_pzt(i)*omega_pzt(i), (omega_pzt(i))~r2]);
end
Sys_Pc_pzt_cl=Sys_Pc_pzt_cl/abs(freqresp(Sys_Pc_pzt_c1,0));

%% Frequency response
f=logspace(1,1log10(60e3),3000);
Fr_Pc_pzt_cl=squeeze(freqresp(Sys_Pc_pzt_c1l,f*2*pi)).";

figure
subplot(211)
semilogx (f,20*1ogl0(abs(Fr_Pc_pzt_c1)))

18 | 2 Modeling

title('P_{cp}');xlabel('Frequency [Hz]');ylabel('Gain

< [dB]');grid;axis([1e3 f(end) -10 30])

subplot(212)

semilogx (f,angle(Fr_Pc_pzt_c1)+*180/pi)

xlabel ('Frequency [Hz]');ylabel('Phase [deg.]');grid;axis([1e3 f(end)
-180 180]);yticks(-180:90:180)

Here is the model construction in Python:

modeling/hddpzt.py

import numpy as np

import matplotlib.pyplot as plt
import control as ct

num_sector = 420 # Number of sector
num_rpm = 7200 # Number of RPM
Ts = 1 / (num_rpm / 60 * num_sector) # Sampling time

PZT
omega_pzt = np.array([14800, 21500, 28000, 40200, 42050,
44400, 46500, 100000]) * 2 * np.pi
kappa_pzt = np.array([-0.005, -0.01, -0.1, +0.8, 0.3, -0.25, 0.3,
10.0])
zeta_pzt = np.array([0.025, 0.03, 0.05, 0.008, 0.008, 0.01, 0.02,
— 0.3])

s = ct.TransferFunction.s # Create a variable for the differentiation
operator
Sys_Pc_pzt_cl = 0 # Create an empty transfer function
for i in range(len(omega_pzt)):
Sys Pc pzt cl += kappa_pzt[i] / (s**2 + 2 * zeta pzt[i] =*
> omega_pzt[i]
* s + (omega_pzt[i]) ** 2) # Add
— the transfer functions
Sys_Pc_pzt_cl /= Sys_Pc_pzt_c1(0) # Normalize the gain at zero
frequency

Frequency response
f = np.logspace(1l, np.logl0(60e3), 3000)
w=f * 2 % np.pi

magPc_pzt, phase_Pc_pzt, omega Pc_pzt = ct.freqresp(
Sys_Pc_pzt_cl, w) # Get the frequency response

plt.figure()

plt.subplot(211)

plt.semilogx(f, 20*np.logl0(magPc_pzt))
plt.title('P_{cp}"')
plt.xlabel('Frequency [Hz]')
plt.ylabel('Gain [dB]")

plt.grid()

plt.axis([1000, f[-1], - 10, 30])
plt.subplot(212)

plt.semilogx(f, phase_Pc_pzt*180/np.pi)
plt.xlabel('Frequency [Hz]')
plt.ylabel('Phase [deg.]')

plt.grid()

plt.axis([1000, f[-1], - 180, 180])
plt.yticks(np.arange(-180, 270, 90))

With the VCM and PZT models, a dual-stage HDD model can be formed
as follows.

% MATLAB:
Sys_Pc = [Sys_Pc_vcm_cl; Sys_Pc_pzt_cl];

Python
Sys_Pc = ct.append(Sys_Pc_vcm_c1l, Sys_Pc_pzt_cl)

2.6 Model Properties

We now formalize key properties of system models for control purpose.

Consider a general system J(with input u(o) (¢ =t or k depending on
whether the signal is in the continuous- or discrete-time domain) and

output y(0):
u y

J is said to be

» memoryless or static if y(o) depends only on u(o),
» dynamic (has memory) if y at the current time depends on input
values at other times.

For example, y(t) = M (u(t)) = yu(t) is memoryless; y(t) = /ot u(t)dt and
y(k) = =¥ u(i) are dynamic.

The system J is linear if it satisfies the superposition property:
My ur(0) + azuz(0)) = a1 (u(0)) + azll(uz(0))

for any input signals u1(0) and uz(0), and any real numbers a1 and a». If
not, the system is nonlinear.

JM is time-invariant if its properties do not change with respect to time.

Assuming the same initial conditions, if we shift #(c) by a constant time
interval, then J is time-invariant if the output L (u(c + 7)) = y(0 +79). For
example, j(t) = Ay(t) + Bu(t) is linear and time-invariant; i(t) = 2y(t) —
sin(y(t))u(t) is nonlinear, yet time-invariant; y(t) = 2y(¢) — ¢ sin(y(¢))u(t)
is time-varying. Often, we abbreviate linear time-invariant systems as LTI
systems.

In mechanical systems, torque limits of motors, hardening spring, Coulomb
friction forces, etc. make systems nonlinear. However, even if physical
systems are nonlinear, they can often be linearized or be well represented
by linear systems under specific conditions, making linear analysis and
design tools powerful.

The system J is called

» causal if y(t) or y(k) depends on u(t) for T < t or k,
» strictly causal if the inequality is strict.

For example, y(t) = u(t — 10) is strictly causal.
A system that is not causal is said to be acausal.

For an LTI continuous-time system to be causal, the order of the denominator
must be greater than or equal to the order of the numerator in its transfer

2.6 Model Properties

19

20 | 2 Modeling

mg

Figure 2.10: Free-body diagram of a mag-

netically suspended ball.

U(t)T ‘

Ah(tﬂ
A

a, qout (t)

Figure 2.11: Water flow in a tank.

function. For example, for the model in Equation 2.1 to be causal, it must
be that n > m. (Check, e.g., the case withn = 0and m = 1.)

2.7 Nonlinear Systems

Although we will be mostly focusing on linear systems, in practice, many
control systems are nonlinear. Several examples are presented next to show
how the nonlinearity plays a role in modeling.

2.7.1 Example: Magnetically Suspended Ball

A magnetically suspended ball consists of a ball of mass m suspended by
an electromagnet as shown in Figure. 2.10. Let y be the position of the
ball, measured down from the base of the electromagnet. If a current u is
injected into the coils of the electromagnet, it will produce a magnetic field
which in turn exerts an upward force on the ball given by F,,, = — cy1_422 Note
that the force decreases as y? increases because the effect of the magnet
weakens when the ball is further away, and that the force is proportional to
u? which is representative of the power supplied to the magnet.

Let us assume that we can measure the position y of the ball. This can be
arranged optically using light-emitting diodes with photocells.

We can then write a simple model for the motion of the ball from Newton’s

second law as
. cu?
myzmg—?. (2.6)

Note that this is a single-input, single-output nonlinear model. The input
and output of this model are:

u the current injected into the magnet coils
y the position of the ball

2.7.2 Example: Water Tank

Consider the water tank in Figure. 2.11. Denote by gin(f) the water flow
entering the tank and gou(#) the water flow leaving the tank from a hole
of area 4. Out goal is to obtain a model that describes the evolution of the
tank height h(t) as a function of the external input u(f) = gin(#). Let A be
the area of the tank. By using the conservation law we can state that

Ah(t) = qin(t) - qout(t)'
Let vout(t) be the speed of the water at the outlet. Then, Gout(t) = avout(t).

Torricelli’s law states that the speed of a fluid through a sharp-edged hole
under the force of gravity is the same as the speed that a body would
acquire in falling freely from a height 4, i.e. vout(f) = /2gh(t), where g is

the acceleration due to gravity. Considering all the above, our nonlinear

model is 1
h = Z(u(t) —a\2gh(t)).

2.7.3 Example: Pendulum

Consider the pendulum shown in Figure. 2.12. We assume that the pen-
dulum has mass m = 0.333 kg which is concentrated at the end point
and length I = 0.75 meters. The angle 0 is measured, and an actuator can
supply a torque u(t) = T.(t) to the pivot point. The moment of inertia
about the pivot point is I = mI?. By analyzing the rigid body dynamics
and writing Euler’s equation for the pendulum, we can readily arrive at a
differential equation model for this system:

10(t) = T, — mglsin(0(t)),

or,

66 = —T. - S sin0(1)),

which is a second-order nonlinear differential equation.

2.7.4 Example: Vehicle Steering

Overhead view 4-wheel kinematic model

Z 1T\ — B
L O - O) 2-wheel kinematic model

Side view

Figure 2.13 shows the kinematics of a four-wheeled vehicle. If we assume
the front and rear pairs of wheels act the same as a single wheel on each axle
at the centerline of the vehicle, we arrive at a two-wheel abstraction known
as the bicycle model. The bicycle model does not take into account tilting of
the vehicle. A four-wheeled vehicle would experience very different tilting
mechanics than those of a two-wheeled vehicle. However, when only the
steering of the vehicle is of concern with the assumption that it cannot
tilt, such as in vehicles with a low center of gravity and operating at slow
enough speeds, the bicycle model is appropriate.

When the vehicle turns, the inner and outer tires exhibit different steering
angles due to their varying distances from point O in the bicycle model in

2.7 Nonlinear Systems | 21

Figure 2.12: Free-body diagram of a pen-
dulum system.

Figure 2.13: Kinematic modelling of the
four-wheel vehicle steering system.

Read more about the bicycle model at,
e.g., https://theflclan.com/2020/09/21/
vehicle-dynamics-the-kinematic-bicycle-model/.

https://thef1clan.com/2020/09/21/vehicle-dynamics-the-kinematic-bicycle-model/
https://thef1clan.com/2020/09/21/vehicle-dynamics-the-kinematic-bicycle-model/

22 | 2 Modeling

Figure 2.14: The bicycle model of the ve-
hicle steering system.

v

Figure 2.14. Here, 6 is the steering angle of the front wheels, b is the wheel
base, a is the distance between the rear axle and the center of mass, x and y
are the positions of the center of mass, 0 is the heading, and « is the angle
between the velocity v and the centerline of the vehicle. The point O is the
intersection of the centerlines of the of the front and rear wheels. By letting
the distance from the center of rotation O to the rear wheel contact point
be r, , we can deduce that b = r, tan 6 and a = r, tan . This leads to the
relationship between a and the steering angle 6:

atané) ‘ 27)

a = arctan (

Given a vehicle speed v at its center of mass, the motion of the center of
mass is expressed as:

d—f =vcos(a + 0),

(2.8)
dy :
i vsin(a + 0).

To determine the influence of the steering angle on the heading angle 0, we
note that the distance from the center of mass to the center of rotation O is
re = a/sin a. As the vehicle rotates around point O, the angular velocity is
given by v/r, = (v/a) sin a. Therefore,

. i tan o
0= g_uvsma_2 sin (arctan (11 a)) . (2.9)
re a a b

When the steering angle 6 and the angle @ (known as the slip angle) is

small, the above equation becomes
.0
0~ E(S' (2.10)

2.8 “All Models are Wrong, but Some are Useful” | 23

Let the input u be the steering angle 6. The full set of nonlinear equations
of motion for the vehicle steering problem is now:

X v cos (a (u) + 6) 2 tan
— |y| =fKxu)=|vsin (C_V (w)+0)|, a (1) = arctan a . (21
dt 0 v sin a(u)
—— a

2.8 “All Models are Wrong, but Some are Useful”

A perfect model is very hard to be obtained in reality. In the Journal of
the American Statistical Association [3], British statistician George Box
famously wrote in 1976, that “all models are wrong, but some are useful.”
The aphorism acknowledges that statistical models always fall short of
the complexities of reality but can still be useful nonetheless. A dynamic
system may simply be too complex (consider the neural system of human
brains), or there are inevitable hardware uncertainties such as the fatigue
of gears or bearings in a car. Modeling thus involves varying degrees of
approximation. For example in modeling a car, we may chose to ignore
rolling resistance, aero-dynamic effects, road-tire interactions, etc.

However, feedback control can empower a system to tolerate model un-
certainties. In a 5-year-old car, the same engine control unit (ECU) can
maintain smooth performance of the internal combustion engine despite
the accumulated mileage and wear, whether they come from highways
or mountains. In the hard disk drive example in Section 2.1, the high-
frequency vibration modes can change their shapes and locations in a batch
of products and when working under different temperatures, leading to the
frequency responses in Figure 2.15 [4]. However, thanks to the robustness
from feedback controls, when making thousands of hard disk drives per
day, the manufactures do not need to tune the controller in each individual
drive. Instead, each batch can robustly read and write data using the same
servo controller.

The following MATLAB codes generate the perturbed HDD model in
Figure 2.15.

% modeling/hdddsa.m

% Dual-stage HDD model

% Number of sector
% Number of RPM

% Sampling time

num_sector=420;
num_rpm=7200;
Ts = 1/(num_rpm/60*num_sector);

% VCM

Kp_vem=3.7976e+07;

omega_vem=[0, 5300 ,6100 ,6500 ,8050 ,9600 ,14800 ,17400 ,21000 ,26000
,26600 ,29000 ,32200 ,38300 ,43300 ,44800]*2*pi;

kappa_vem=[1, -1.0 ,+0.1 ,-0.1 ,0.04 ,-0.7 ,-0.2 ,-1.0 ,+3.0 ,-3.2
,2.1 ,-1.5 ,+2.0 ,-0.2 ,+0.3 ,-0.5];

zeta_vem =[0, 0.02 ,0.04 ,0.02 ,0.01 ,0.03 ,0.01 ,0.02 ,0.02 ,0.012
,0.007 ,0.01 ,0.03 ,0.01 ,0.01 ,0.01];

% PZT

omega_pzt=[14800 ,21500 ,28000 ,40200 ,42050,44400,46500
,100000]#2%pi;

[3]: Box (1976), Science and statistics

Robust control is not tied to complex con-
trol. A PID controller can create robust
stability too.

[4]: Atsumi (2022), Magnetic-head Position-
ing Control System in HDDs

The subfield of robust control covers de-
tails of why and how to handle the model
uncertainties.

24 | 2 Modeling

Gain [dB]

10
Frequency [Hz]

4

©
S
T

Phase [deg.]
i
3

-270 -

-360 - -

Figure 2.15: Example frequency responses
of the voice coil motor stage in a batch of
hard disk drives.

Frequency [Hz]

kappa_pzt=[-0.005,-0.01 ,-0.1 ,+0.8 ,0.3 ,-0.25 ,0.3 ,10.0];
zeta_pzt =[0.025 ,0.03 ,0.05 ,0.008 ,0.008 ,0.01 ,0.02 ,0.3];

%% LT(Low temp.) model: VCM: +4 % resonance shift from nominal
— model, PZT actuator: +6 % resonance shift from nominal
— model
% VCM
Sys_Pc_vcem_c1=0;
for i=1:length(omega_vcm)
Sys_Pc_vcm_c1l=Sys_Pc_vcm_cl+ss(tf([0,0,kappa_vem(i)]*Kp_-
vem, [1, 2%zeta_vem(i)*0.8*omega_vem(i)*1.04,
(omega_vem(i)*1.04)72]));
Sys_Pc_vcem_cl=ssbal(Sys_Pc_vcm_cl1);
end

% PZT
Sys_Pc_pzt_c1=0;
for i=1:1length(omega_pzt)
Sys_Pc_pzt_cl1=Sys_Pc_pzt_cl+ss(tf([0,0,kappa_pzt(i)],[1,
2#zeta_pzt(i)*0.8*omega_pzt(i)*1.06,
(omega_pzt(i)*1.06)"2]));
Sys_Pc_pzt_cl=ssbal(Sys_Pc_pzt_cl);
end
Sys_Pc_pzt_cl1=Sys_Pc_pzt_cl/abs(freqresp(Sys_Pc_pzt c1,0));

%% RT(Room temp.) model: Same as nominal models
% VCM
Sys_Pc_vecm_c2=0;
for i=1:length(omega_vcm)
Sys_Pc_vcm_c2=Sys_Pc_vem_c2+ss(tf([0,0,kappa_vem(i)]*Kp_-
vem, [1, 2%zeta_vem(i)*omega_vem(i),
omega_vem(i)~2]));
Sys_Pc_vcem_c2=ssbal(Sys_Pc_vcm_c2);
end

% PZT
Sys_Pc_pzt_c2=0;

2.8 “All Models are Wrong, but Some are Useful”

for i=1:length(omega_pzt)
Sys_Pc_pzt_c2=Sys_Pc_pzt_c2+ss(tf([0,0,kappa_pzt(i)],[1,
2+xzeta_pzt(i)*omega_pzt(i), omega_pzt(i)"2]));
Sys_Pc_pzt_c2=ssbal(Sys_Pc_pzt_c2);
end
Sys_Pc_pzt_c2=Sys_Pc_pzt_c2/abs(freqresp(Sys_Pc_pzt c2,0));

%% HT(High temp.) model: VCM: -4 % resonance shift from nominal

— model, PZT actuator: -6 % resonance shift from nominal

— model

% VCM

Sys_Pc_vcm_c3=0;

for i=1:length(omega_vcm)
Sys_Pc_vem_c3=Sys_Pc_vem_c3+ss(tf([0,0,kappa_vem(i)]*Kp_-
— vem, [1, 2*zeta_vem(i)*1.2*omega_vcm(i)*0.96,
— (omega_vcm(i)*0.96)12]));
Sys_Pc_vem_c3=ssbal(Sys_Pc_vcm_c3);

end

% PZT

Sys_Pc_pzt_c3=0;

for i=1:length(omega_pzt)
Sys_Pc_pzt_c3=Sys_Pc_pzt_c3+ss(tf([0,0,kappa_pzt(i)],[1,
— 2+*zeta_pzt(i)*1.2*omega_pzt(i)*0.94,
— (omega_pzt(i)*0.94)"2]));
Sys_Pc_pzt_c3=ssbal(Sys_Pc_pzt_c3);

end

Sys_Pc_pzt_c3=Sys_Pc_pzt_c3/abs(freqresp(Sys_Pc_pzt_c3,0));

%% LT / PZT gain +5% (Case 4)
Sys_Pc_vcm_c4=Sys_Pc_vcm_cl;
Sys_Pc_pzt_c4=Sys_Pc_pzt_c1%1.05;

%% RT / PZT gain +5% (Case 5)
Sys_Pc_vcm_c5=Sys_Pc_vcm_c2;
Sys_Pc_pzt_c5=Sys_Pc_pzt_c2*1.05;

%% HT / PZT gain +5% (Case 6)
Sys_Pc_vcm_c6=Sys_Pc_vcm_c3;
Sys_Pc_pzt_c6=Sys_Pc_pzt_c3%1.05;

%% LT / PZT gain -5% (Case 7)
Sys_Pc_vcm_c7=Sys_Pc_vcm_cl;
Sys_Pc_pzt_c7=Sys_Pc_pzt_c1%0.95;

%% RT / PZT gain -5% (Case 8)
Sys_Pc_vcm_c8=Sys_Pc_vcm_c2;
Sys_Pc_pzt_c8=Sys_Pc_pzt_c2%0.95;

%% HT / PZT gain -5% (Case 9)
Sys_Pc_vcm_c9=Sys_Pc_vcm_c3;
Sys_Pc_pzt_c9=Sys_Pc_pzt_c3%0.95;

%% All plant
Sys_Pc_vcem_all=[Sys_Pc_vcm_c1;Sys_Pc_vecm_c2;Sys_Pc_vem_c3;Sys_Pc_vem_-
<> c4;Sys_Pc_vcm_c5;Sys_Pc_vem_c6;Sys_Pc_vem_c7;Sys_Pc_vem_c8;Sys_-
Pc_vem_c9];
Sys_Pc_pzt_all=[Sys_Pc_pzt_c1;Sys_Pc_pzt_c2;Sys_Pc_pzt_c3;Sys_Pc_pzt_-
c4;Sys_Pc_pzt_c5;Sys_Pc_pzt_c6;Sys_Pc_pzt_c7;Sys_Pc_pzt_c8;Sys_-
— Pc_pzt_c9];

%% Cotrolled object (Discrete-time system)
% Case 1
Sys_Pd_vcm_cl1l=c2d(Sys_Pc_vcm_c1,Ts, 'ZOH') ;

25

26 | 2 Modeling

Sys_Pd_pzt_cl=c2d(Sys_Pc_pzt_c1,Ts,'ZOH");

% Case 2
Sys_Pd_vem_c2=c2d(Sys_Pc_vem_c2,Ts, 'ZOH');
Sys_Pd_pzt_c2=c2d(Sys_Pc_pzt_c2,Ts, 'ZOH');

% Case 3
Sys_Pd_vem_c3=c2d(Sys_Pc_vem_c3,Ts, 'ZOH') ;
Sys_Pd_pzt_c3=c2d(Sys_Pc_pzt_c3,Ts, 'ZOH');

% Case4
Sys_Pd_vem_c4=c2d(Sys_Pc_vcm_c4,Ts, 'ZOH'") ;
Sys_Pd_pzt_c4=c2d(Sys_Pc_pzt_c4,Ts, 'ZOH'") ;

% Case 5
Sys_Pd_vem_c5=c2d(Sys_Pc_vecm_c5,Ts, 'ZOH') ;
Sys_Pd_pzt_c5=c2d(Sys_Pc_pzt_c5,Ts, 'ZOH'") ;

% Case 6
Sys_Pd_vem_c6=c2d(Sys_Pc_vecm_c6,Ts, 'ZOH') ;
Sys_Pd_pzt_c6=c2d(Sys_Pc_pzt_c6,Ts, 'ZOH") ;

% Case 7
Sys_Pd_vem_c7=c2d(Sys_Pc_vem_c7,Ts, 'ZOH');
Sys_Pd_pzt_c7=c2d(Sys_Pc_pzt_c7,Ts, 'ZOH');

% Case 8
Sys_Pd_vem_c8=c2d(Sys_Pc_vcem_c8,Ts, 'ZOH'") ;
Sys_Pd_pzt_c8=c2d(Sys_Pc_pzt_c8,Ts, 'ZOH');

% Case 9
Sys_Pd_vem_c9=c2d(Sys_Pc_vcem_c9,Ts, 'ZOH'") ;
Sys_Pd_pzt_c9=c2d(Sys_Pc_pzt_c9,Ts, 'ZOH'") ;

% All

Sys_Pd_vem_all=[Sys_Pd_vcm_c1;Sys_Pd_vcm_c2;Sys_Pd_vcm_c3;Sys_Pd_vem_-
c4;Sys_Pd_vcem_c5;Sys_Pd_vem_c6;Sys_Pd_vem_c7;Sys_Pd_vcm_c8;Sys_-
Pd_vcm_c9];

Sys_Pd_pzt_all=[Sys_Pd_pzt_c1;Sys_Pd_pzt_c2;Sys_Pd_pzt_c3;Sys_Pd_pzt_-
c4;Sys_Pd_pzt_c5;Sys_Pd_pzt_c6;Sys_Pd_pzt_c7;Sys_Pd_pzt_c8;Sys_-
Pd_pzt_c9];

%% Frequency response
f=logspace(1,1l0og10(60e3),3000);
Fr_Pc_vcm_all=squeeze(freqresp(Sys_Pc_vcm_all,f*2xpi))."

Fr_Pc_pzt_all=squeeze(freqresp(Sys_Pc_pzt_all,f*2xpi))."

Fr_Pd_vcm_all=squeeze(freqresp(Sys_Pd_vcm_all,f+*2*pi))."'
Fr_Pd_pzt_all=squeeze(freqresp(Sys_Pd_pzt_all,f*2*pi)).";

figure

subplot(211)

semilogx(f,20*1logl10(abs(Fr_Pc_vcm_all(:,1:7))))

hold on

semilogx (f,20*1logl10(abs(Fr_Pc_vcem_all(:,8:9))),'--")

hold off

title('P_{cv}');xlabel('Frequency [Hz]');ylabel('Gain
[dB]');grid;axis([1e3 f(end) -90 10])

subplot(212)

semilogx (f,mod(angle(Fr_Pc_vcem_all(:,1:7))*180/pi+360,360)-360)

hold on

semilogx (f,mod(angle(Fr_Pc_vcm_all(:,8:9))*180/pi+360,360)-360,"'--")
hold off

xlabel('Frequency [Hz]');ylabel('Phase [deg.]');grid;axis([1e3 f(end)
-360 0]);yticks(-360:90:0)

legend('Case 1','Case 2','Case 3','Case 4','Case 5','Case 6', 'Case
7','Case 8','Case 9','Location', 'Northwest')

figure

subplot(211)

semilogx (f,20*1logl0(abs(Fr_Pc_pzt_all(:,1:7))))

hold on

semilogx (f,20*1logl10(abs(Fr_Pc_pzt_all(:,8:9))),'--")

hold off

title('P_{cp}');xlabel('Frequency [Hz]');ylabel('Gain
[dB]');grid;axis([1e3 f(end) -10 30])

subplot(212)

semilogx (f,angle(Fr_Pc_pzt_all(:,1:7))*180/pi)

hold on

semilogx (f,angle(Fr_Pc_pzt_all(:,8:9))*180/pi,'--")
hold off

xlabel ('Frequency [Hz]');ylabel('Phase [deg.]');grid;axis([1e3 f(end)

-180 180]);yticks(-180:90:180)
legend('Case 1','Case 2','Case 3','Case 4','Case 5','Case 6', 'Case
7','Case 8','Case 9','Location', 'Northwest')

2.9

= W N =

Exercise

. Whatis the difference between a causal system and an acausal system?
. Can a static system be acausal?

. Can a linear system be time-varying?

. Solve the following ODEs:

a) i+y—-2y=0,y(0)=4,y(0)=-5
b) i +y+0.25y =0, y(0) = 3, y(0) = =3.5,
c) j+0.4y +9.04y = 0.

. A quadcopter is a type of unmanned aerial vehicle (UAV) that is

controlled by adjusting the speed of its four rotors. Read relevant
literature and develop a mathematical model of a quadcopter.

. A robotic arm is used to move objects in a manufacturing facility.

The arm consists of several joints that can be controlled to move the
end-effector to a desired position. Read relevant literature. Develop a
dynamic model between the torque input to the motors and the joint
angles.

. A power system consists of generators, transformers, transmission

lines, and loads. Read relevant literature and develop a simplified
model of a power system.

. A cruise control system in a car maintains a constant speed by

adjusting the throttle. The system must be able to handle changes in
terrain and driving conditions. Read relevant literature and develop
a simplified model of a cruise control system.

. A temperature control system in a chemical plant consists of a heater,

a temperature sensor, and a controller. The controller receives input
from the temperature sensor and sends a signal to the heater to adjust
the temperature. Develop a block diagram of the control system and
a mathematical model of the plant.

2.9 Exercise

27

3 Laplace and Z Transforms

3.1 The Laplace Transform

—_1)nt+l
Consider the summation X, ¢ 111}1 . You may recall from calculus that

the series converges to a finite value. You may also find that the infinite
sum equals In 2, and that the solution steps can be overwhelming if you do
not deal with infinite integrals regularly. It turns out that Laplace transform
can help reduce the problem to basic and finite integrals!

Beyond infinite series, for control engineering, the Laplace transform is
a foundational tool for modeling and system analysis. In the previous
chapter, we have seen various continuous-time system models in the form
of Ordinary Differential Equations (ODEs). In this chapter, we review how
such ODEs and models can be reformed and simplified for controls with
the Laplace transform.

3.1.1 The Laplace Approach to ODEs

The Laplace transform is a powerful tool to solve a wide variety of ODEs.
To directly solve an ODE in calculus, we often need to solve a characteristic
equation, find the time-domain modes of the solution, and use the method
of undetermined coefficients to determine the specific parameters of each
mode — a lot of work! With the Laplace transform, the calculus operators in
the time domain are replaced by algebraic operations. Algebraic solutions
are much easier to obtain, and time-domain ODE solutions can be subse-
quently obtained via the inverse Laplace transform. Moreover, we will be
able to easily manipulate interconnected ODEs and conduct closed-loop
analyses — all very useful for dynamic systems and controls.

We start with reviewing a number of relevant mathematical definitions
and notations.

3.1

3.2

3.3

3.4

3.5

3.6
3.7

The Laplace Transform . . 29

Inverse Laplace Trans-
form and Partial Fraction
Expansion

From Laplace Transform to

Transfer Functions 41
The Z Transform 45
From Difference Equation

to Discrete-Time Transfer

Functions 53
Recap 56
Exercise 57

30 | 3 Laplace and Z Transforms

Figure 3.1: The Laplace approach to ODEs.

Pierre-Simon

Figure 3.2: Laplace
(1749-1827) is often referred to as the
French Newton or Newton of France.
Thirteen years more junior than Lagrange,
Laplace developped and pioneered
astronomical stability, mechanics based
on calculus, Bayesian interpretation
of probability, mathematical physics,
just to name a few. He studied under
Jean le Rond d’Alembert (co-discovered
fundamental theorem of algebra, aka
d’Alembert/Gauss theorem).

https:/ /en.wikipedia.org/wiki/
Pierre-Simon_Laplace#/media/File:
Laplace,_Pierre-Simon,_marquis_de.jpg

Laplace Transform

ODE

JI Algebraic equation

Easy

? Easy Arithmetic

Easy

ODE solution i Algebraic solution ‘

Inverse Laplace Transform

A set is a well-defined collection of distinct objects, e.g., {1, 2, 3}. The most
relevant sets for us are:

» R: the set of real numbers,
» C: the set of complex numbers, and
» R,:the set of positive real numbers.

We write x € S to indicate that x is a member of, or belongs to, set S.
For example, 1 € R. the notation = reads “is defined as”: for example,
y(t) = 3x(t) + 1.

f: Ry — Rindicates that f is a continuous function the maps a value
from its domain in R, to a value in its codomain R. We will mostly use
f(f) to denote a continuous-time function, whose domain is time. Unless
stated otherwise, we assume that f(t) = 0 for all ¢ < 0.

Definition 3.1.1 For a continuous-time function f : Ry — R, the Laplace
Transform is defined as:

F(s) = 2{f(0)} /0 Festdt, 31)

where s € C.

Notice that the integration from 0 to oo eliminates ¢t and the Laplace
transform is a function of the complex variable s.

For any integration over an infinite horizon, we must pay attention to the
condition for the integral to converge. The Laplace transform exists if

» f(t)is piecewise continuous (see, for example, Figure 3.3), and
» f(t) does not grow faster than an exponential as t — co:

[f(t)] < ke™, forallt > to,

for some constants k, a, to € Ry, as illustrated in Figure 3.4. An f(t)
satisfying such a property is called to be of exponential order.

From undergraduate controls course(s), you have learnt the following basic
Laplace transforms:

https://en.wikipedia.org/wiki/Pierre-Simon_Laplace#/media/File:Laplace,_Pierre-Simon,_marquis_de.jpg
https://en.wikipedia.org/wiki/Pierre-Simon_Laplace#/media/File:Laplace,_Pierre-Simon,_marquis_de.jpg
https://en.wikipedia.org/wiki/Pierre-Simon_Laplace#/media/File:Laplace,_Pierre-Simon,_marquis_de.jpg

f#)

f#)

1. Exponential functions: If f(t) = e™, a € C, then

F(s)=/ e_‘”e_”dt=/ e+t gy
0 0

— /oo ;de—(lﬁs)t — ;e—(m—s)tr" (3'2)
o —(a+s) —(a+s) 0

1

T s+4a’

2. Step functions: As a special case of the exponential function (a2 = 0),
when

1, t>20
fo=10={ ¢ 130 63
then
Fs) =+
=<
3. Ramp function: if
t, t>0
ft)= { 0 t<0 (3.4)
then Z{t} = S%
4. Sine function: If f(t) = sin(wt), then F(s) = . Thisis again an ap-

plication of Equation 3.2. From the Euler formula, we have sin(wt) =
% and hence & {sin(wt)} = % (L{el“'} — L{e7I¥'}), where
the Laplace transforms of the two exponential functions are readily
available by applying Equation 3.2: £{e/*!} = s_lj —and £{e 9"} =
1
s+jw*
5. Cosine function: If f(t) = cos(wt) then F(s) = ;—. This is again

an application of the Euler formula, which gives cos(wt) = M

3.1 The Laplace Transform | 31

Figure 3.3: Illustration of piecewise con-
tinuous functions.

Figure 3.4: Illustration of exponential or-
der.

The Euler formula establishes the funda-
mental relationship between the trigono-
metric functions and the complex expo-
nential function. Euler’s formula states
that for any real number a:

e/* =cosa + jsina.

Leonhard Euler (04/15/1707 -09/18 /1783)
is a Swiss mathematician, physicist, as-
tronomer, geographer, logician and engi-
neer. He studied under Johann Bernoulli,
and taught Lagrange. He wrote 380 ar-
ticles within 25 years at Berlin, and pro-
duced on average one paper per week at
age 67, when he was almost blind!

32 | 3 Laplace and Z Transforms

p(t)—u(t—e)

€ 7

6. Impulse/Dirac Delta function: If f(f) = 6(t) = lime—o
then F(s) = 1.

Laplace Transform in MATLAB

In MATLAB, the command laplace performs the Laplace transform as
1: The Symbolic Math Toolbox is required illustrated in the following codes.!
here.
% laplacezZtransforms/simplelaplace.m
syms a t

X

exponential functions
f = exp(-a*t);
F = laplace(f)

F =
1/(a + s)
g = exp(-2+t);

G = laplace(g)

G =
1/(s + 2)

% ramp function
h = 2*t;

H = laplace(h)

H =

2/sM2

% impulse function
d = dirac(t);

D = laplace(d)

D =
1

Laplace Transform in Python

In Python, the Laplace transform can be realized using the sympy package

2: You can install the package via: pip as shown next.2
install sympy, if not done already. If
you use Anaconda, run conda install # laplaceZtransforms/simplelaplace.py
sympy instead. import sympy
t, s = sympy.symbols('t, s')
a = sympy.symbols('a', real=True, positive=True)
f = sympy.exp(-a*t)
F = sympy.laplace_transform(f, t, s, noconds=True)
print (F)

g = sympy.exp(-2*t)
G = sympy.laplace_transform(g, t,
print (G)

w

, noconds=True)

h = 2*t
H = sympy.laplace_transform(h, t,
print (H)

w

, noconds=True)

d = sympy.DiracDelta(t)
D sympy.laplace_transform(d, t,
print (D)

, noconds=True)

»

The results are shown below:. 3

1/(a + s)
1/(s + 2)
2/s%%2

1

Let us now revisit the calculus problem at the beginning of the chap-
ter, 217, (-1)"+ L Note that £ {1} = %, we have 7 | (-1 S
Do (—1)”“ [)m 1-e " dt. The integration is over f instead of n. Hence,

i (_1)n+1 % — I ® i (_1)n+1 e—ntdt
n=1 n=1
= /m (-1)2 (-1)" e ™dt
0 n=1
= /m(—l)i (e)" dt
0 n=1
co _e_t
Lau

=- uzl+e
N)

=1In?2.

With the Laplace transform, only basic calculus tools were used in the
solution approach!

The Dirac Delta Function and Distributions
Figure 3.5 illustrates the Dirac impulse function 6(t). It satisfies the follow-
ing properties:

> /000 O0(t —T)dt =1, and

> [T 6t = T)f(tdt = £(T).

Using fow o(t)f(t)dt = f(0), we can compute the Laplace transform:

L{o(t)} = /000 e sto(t)dt = e™0 = 1.

The impulse function is not a normal function but a generalized function,
more formally known as a distribution. To develop an intuition, consider
solving a differential equation

y—ay=1u+bu,

where the input u is a unit step function 1(¢). On the right-hand side of
the equation, we have a differentiation of a unit step function, which is not
feasible directly, because the function is not continuous everywhere but
has a step jump at time zero.

3.1 The Laplace Transform | 33

3: Note that s*#2 denotes s? in Python.

ot —T)

T t

Figure 3.5: Illustration of the Dirac im-
pulse function.

34 | 3 Laplace and Z Transforms

Figure 3.6: Approximation of the unit-step
function.

Instead, consider the following limits that approach a unit step:

0 fort<O
pe(t) == %t for0<t<e (3.5)
1 fore<t

where € > 0. A picture of u., with different values of €, is shown in Figure
3.6. We see that as € — 0, the function indeed approaches to the original
unit step.

1 T T T
0.8 decreasing epsilon 1
o 06 i
°
2
=
£
< 04t i
02 h
0 1 1 1 1
-1 0 1 2 3 4 5
Time (sec)

Note that p, is continuous, and piecewise differentiable, with derivative

0 fort<O
fe(t) =2 1 foro<t<e (3.6)
0 fore<t

You can have a plot of ji. and will see that it is zero for the majority of
time, except at time near t = 0. Between time t = 0 and t = ¢, [ic has a
rectangular shape that is 1/€ tall and € wide.

Call the function in Equation 3.6 6.. Note that for all values of € > 0,

00 0 € 00
/ 6E(t)dt=/ 0dt+/ ldt+/ 0dt
—00 —00 0 € € (37)
=1,

and that for f <0and t > €, d¢(t) = 0.

Moreover, for any continuous function f, we have

) 0 € €
lim / _ f(Be(t)dt = lim [/ et + /0 f(t)édtJr /0 f(t)Odt]
= lim /O f(t)%dt

e—0
= f(0),
(3.8)
and for any ¢ # 0, lime—,0 6¢(¢) = 0.

Hence, in the limit we can imagine a “function” 6 whose value at nonzero ¢
is 0, whose value at t = 0 is undefined, but whose integral is finite, namely
1.

We cannot differentiate pe(t) in Equation 3.6 further. However, we can use
another more smoother approximation. Let 6. be defined as

0 for t<0,
£ for O0<t<e
—) ’
Oc(t) := Eeg;t for e<t<2e, (3.9)
0 for 2e < t.

Plotted out with different values of €, this looks like the following in Figure
3.7.

20 T T T T T T T

15 | 1
[0
kel
2
3 10 A
S
<

5 - -

decreasing epsilon
0 4><\J L L L L L

0 1 2 3 4 5 6 7 8
Time (sec)

Note that independent of €, we have

[: Se(t)dt = 1.

Plotted out with different values of €, the integral of 5(t) has the shape in
Figure 3.8.

Compared to Figure 3.6, we have a new, smoother approximation of the
unit step function. This new p.(t), however, is twice differentiable with
Lie(t) = O¢(f) and the derivative of 6(t) is well defined, satisfying

0 for t<0,
dde é for 0<t<e,
dat —el—z for €<t <2e,
0 for t > 2e.

You can verify that for any continuous function f, we also have

tim [foo.teyit = 0,

3.1 The Laplace Transform | 35

Figure 3.7: Approximation of the Dirac-
delta function.

36 | 3 Laplace and Z Transforms

Figure 3.8: Toward smoother approxima-
tions of the unit-step function.

0.8

0.2

0 Il Il Il Il J
-1 0 1 2 3 4 5

time (sec)

and for any differentiable function f, we have

s
i [o %ozar =)

In the limit, we get an even more singular function, 8. Beyond Equation
3.6 and Equation 3.9, we can have more smoother approximations to the
impulse, which can have valid higher-order derivatives 5, 6, 6%,

3.1.2 Relevant Properties of the Laplace Transofrm

In this section, we review a few important properties of the Laplace
transform.

The Laplace operator is a linear operator and satisfies the superposition prin-
ciple. For any &, € C and functions f(t), g(t), let F(s) = Z{f(#)}, G(s) =
Z{g(t)}. Then

| £{af(t)+g(t)} = aF(s) + BG(s).

A pivotal property of the Laplace transform is that the derivative operator
(d/dt) in the time domain corresponds to multiplication by s in the Laplace

s domain. Let f(t) = %, then

L{f(t)} = sF(s) - £(0).

3.1 The Laplace Transform

This can be verified via integration by parts:

L) = /0 e~ f(t)dt

B _/0 diz;s fdt+ e FB)}, 5" (3.10)
= S/ e S f(t)dt — £(0) = sF(s) — £(0).
0

Also, the integral operator in the time domain corresponds to division by s

or multiplication by %:
t o t
3{/ f(T)dT} / /f(’c)d’ce_“dt
0 o Jo
1 —stoo [st 3.11
=— | f(r)dre - — [f(t)estar GBI
=5 Jo o SJo

= %F(s).

Using the definition, we have the following additional useful properties.

Multiplication by ¢~

Multiplication in the time domain by an exponential function, in other
words, adding a time-domain decay, corresponds simply to a translation in
the s domain:

£ {e™™f(t)} = F(s +a).

Example 3.1.1 With Z{1(¢)} = %, we can use the time-domain multipli-
cation property to verify that £{e "'} = # Also, given Z{sin(wt)} =

o7, it is immediate that Z{e " sin(wt)} = (s-i-a()‘—;ﬂuz

Multiplication by ¢

Notice that £{1(¢)} = % and Z{t} = siz Multiplication by ¢ in the time
domain corresponds to derivative in the s domain:

dF(s)

z{tfi} =- s

Time delay

A time delay, on the other hand, corresponds to multiplication by the

exponential function in the s domain: | £ { ft—- T)} = e °"F(s) | Hence,

for a shifted impulse, we have the following Laplace transform:

37

38

3 Laplace and Z Transforms

% laplaceztransforms/laplaceTimeDelay.m
syms t

d = dirac(t-4);

D = laplace(d)

D =
exp(-4+*s)

In Python, the same result can be realized by:

laplaceZzZtransforms/laplaceTimeDelay.py

import sympy

t, s = sympy.symbols('t, s')

d = sympy.DiracDelta(t-4)

D = sympy.laplace_transform(d, t, s, noconds=True)
print (D)

Convolution

Given fu(t), fa(t),and (fix £)(t) = [} fi(t=1)fa(0)dT = (fi* fo)(t), then

L{fi(t) * fo(t)} = F1(s) fo(s).

To see this, notice that the step function 1(f — 7)is 1if 0 < 7 < t and zero
if T > t. Hence

o t
[] ethu-op@a
t=0 J7=0
=/ / e At —1)1(t —1) fo(r)drdt
t=0 J 7=l

0
=/W/m€—s(t—r)e—5Tfl (f—T)l(t—T)fz (T)d’(dt
t=0 J7=0
:/ / E_S(t_T)fl (t—1)1(t — 1) e fo (1) drdt
=0 Jt=0
= /oo e f (1) /00 e—S(t—T)f1 (t—7)1(t - 7)dtdt (3.12)
=0 t=0

T

=0

_ / JACKIO

o0

=F1(s) » e fo(r)dr

=F1(s) F2(s).

Initial Value Theorem

If £(04) = limy—, f(t) exists, then f(04) = lims_c SF(s).

3.2 Inverse Laplace Transform and Partial Fraction Expansion | 39

Final Value Theorem

If lim; o0 f(t) exists, then lim; o f(#) = lims_,0 sF(s). Using the above
properties, along with the Laplace-transform results for fundamental
signals such as the exponential functions, we have the common Laplace
transforms in Table 3.1.

f(#) F(s) f(t) E(s)
sin wt % et L
s Jg W sl+ a
cos wt ﬁ t —2
s2 + s
tx (t) _dX_(t)S) 12 E
s s3 .
@ / X (s)ds te™ 5
s (s +a)
o (t) 1 e " sin(wt) ————
) (s +a)* + w2
1(t) - e~ cos (wt) %
s (s+a) + w?

3.2 Inverse Laplace Transform and Partial
Fraction Expansion

The inverse Laplace transform of F(s) is defined by the contour integral

f(t)=2"YF(s)} = /Cﬂm F(s)es'ds, t > 0. (3.13)
c—joo

This integral is challenging to calculate. Usually, we do not use the definition
directly. Instead, we break a large Laplace transform into small blocks by
partial fraction expansion, also known as partial fraction decomposition:

U B(s) _ Bi(s) Bafs)
TAG) T M) AG)

F(s)
and then identify the individual inverse Laplace transforms on the right-
hand side by observation or a lookup table such as Table 3.1.

We use a few examples to demonstrate strategies for common partial

fraction expansions.

Example 3.2.1 (Real and Distinct Roots in the Denominator) Consider

B(s) _ 32
T A(s) s(s+4)(s+8)

A(s) has three distinct roots: 0, -4, and -8. The partial fraction expansion

1S
32 K K K

s(s +4)(s +8) T Ts+4 s5+8

Table 3.1: Common Laplace transforms.

40 | 3 Laplace and Z Transforms

where the residues can be calculated by:

> Kl = lim5_>0 SP(S) = 1,
» K, =limg_,_4(s +4)F(s) = -2,
» K3 = lim5_>_8(s + 8)P(S) =1.

The results can be verified in MATLAB and Python as follows:

% laplacezZtransforms/partial fraction_expansion.m

syms s
G = 32/s/(s+4)/(s+8)
partfrac(G)

laplaceZtransforms/partial fraction_expansion.py

import sympy

s = sympy.symbols('s")
G = 32/s/(s+4)/(s+8)
print (sympy.apart(G))

1/(s + 8) - 2/(s + 4) + 1/s

Example 3.2.2 (Real and Repeated Roots in A(s)) Consider

2

e

The partial fraction expansion is

7 K K K3

= + + .
(s+1)(s+2)2 s+1 s+2 (s+2)?

(3.14)

Here, the residues for the single roots are calculated by

» K3 =lims_,_»(s +2)°F(s) = -2, and
» Ki = lim5_>_1(s + 1)F(S) =2.

For K>, we multiply both sides of Equation 3.14 with (s + 2)* and
differentiate once with respect to s, to get

e 4 2 _
K, = 5131_12 g(s +2)°F(s) = —2.

With the Laplace transform, the calculus operators in the time domain
are replaced by algebraic operations. For example, consider the following
first-order system

y(t) = —ay(t) + b1(t),

where a > 0,b > 0,y(0) = yo € R. Laplace transform gives Z{y(t)} =
sY(s) — y(0). Thus,

Y() = —y(0) + ———

s+ s(s+a)’
and by partial fraction expansion,

Y(s)z%y(0)+g(1— !)

+a S s+a

3.3 From Laplace Transform to Transfer Functions | 41

The first-order terms on the right-hand side are readily relatable to their
time-domain functions. By the inverse transform, we have

y(6) = e y(0) + 2(1(0) - o).

From the ODE, we observe that y(c0) = %. So in the end, the system has
scaled the step input by a factor of b/a. 4

Example 3.2.3 Leta > 0,b > 0,y(0) = yo € R. Obtain the solution to
the ODE: y(t) = —ay(t) + bo(t).

Solution: Applying Laplace transform yields £{y(t)} = sY(s) — yo =
—aY(s) + b. Solving for Y(s), we have Y(s) = ﬁ(yo + D). Hence, y(t) =
L {Y(s)} = e (3o + b). °

3.3 From Laplace Transform to Transfer Functions

Consider an N-th order differential equation

an dn—l) dmuy dm—lu)
?3+an_1w_]{+m+a1y+aoy =by T +bm-1 I +---+Dbii+b,ou,
(3.15)
where y(0) =0, % . =0,..., Z:,% . = 0. Applying Laplace transform
t= t=

yields
(8" +ay_18" "V + - +a0)Y(s) = (bys™ + by—18™ " + - + bo)U(s),

and hence

Y(s) = bus™ + by—18™ 1 + -+ + by

U(s).
S"+ay1s" 4+ ag 5)

A Y bm m bm— m=1_... b .
G(s) = % = sf1+;,,1slns-1+jr-+a; 0 relates the input u(t) to the output y(t)
in the Laplace domain and is known as the transfer function. The Laplace
transform of the output signal is the product of the transfer function and

the Laplace transform of the input signal.

A(s) = 01is called the characteristic equation, and its roots are the poles of
G(s). Notice that |G(s)| = oo at every pole. Roots of B(s) = 0 are the zeros
of G(s), and |G(s)| = 0 at every zero. G(s) is called proper if the order of the
denominator 7 is no less than the order of the numerator m, and is called
strictly proper if n > m. The condition that m < n is called the realizability
condition.

Example 3.3.1 Gi(s) = K is proper. Ga(s) = —X- is strictly proper.

s+a

The following codes demonstrate the construction and basic analysis of a
transfer function in MATLAB and Python.

% laplaceZtransforms/transfer_ fun.m
num = [1 2];
den = [1 2 3];

4: On the other hand, knowing that a
final value exists and using the Final
Value theorem, we have: lim;_,c y(f) =
lims—p sY(s) = %, which matches the re-

sult from the direct ODE solution.

5: What's the initial value from initial
value theorem? What does the impulse
do to the initial condition?

42

3 Laplace and Z Transforms

sys_tf = tf(num,den)
poles = pole(sys_tf);
zeros = zero(sys_tf);

disp(['System Poles = ',num2str(poles')])
disp(['System Zeros = ',num2str(zeros')])

[yout, T] = step(sys_tf);
figure, plot(T, yout)
figure, impulse(sys_tf)

ul = 2*ones(length(T),1);
u2 = sin(T);

figure, lsim(sys_tf,ul,T)
figure, lsim(sys_tf,u2,T)

laplacezZtransforms/transfer_fun.py
import control as ct

import matplotlib.pyplot as plt
import numpy as np

Creating a transfer function system

num = [1,2] # Numerator co-efficients

den = [1,2,3] # Denominator co-efficients

sys_tf = ct.tf(num,den)
print(sys_tf)

Poles and zeros
poles = ct.pole(sys_tf)
zeros = ct.zero(sys_tf)

print ('\nSystem Poles = ', poles, '\nSystem Zeros

T,yout = ct.step_response(sys_tf)

Plot the response
plt.figure(1l,figsize = (6,4))
plt.plot(T,yout)

plt.grid(True)
plt.ylabel("y")
plt.xlabel("Time (sec)")
plt.show()

T,yout i = ct.impulse_response(sys_tf)

Plot the response
plt.figure(1l,figsize = (6,4))
plt.plot(T,yout_i)

plt.grid(True)
plt.ylabel("y")
plt.xlabel("Time (sec)")
plt.show()

ul = np.full((1,len(T)),2) #Create an array of 2's,

u2 = np.sin(T)

', zeros)

equal to 2*step

T,yout_ul = ct.forced_response(sys_tf,T,ul) # Response to input 1

T,yout_u2 = ct.forced_response(sys_tf,T,u2) # Response to input 2

plt.figure(2,figsize = (6,4))

plt.plot(T,yout_ul)
plt.plot(T,yout_u2)

3.3 From Laplace Transform to Transfer Functions | 43

plt.grid()

plt.xlabel("Time (sec)")
plt.ylabel("y")

plt.legend(["Input 1","Input 2 (sin)"])
plt.show()

Example 3.3.2 (AFM System) For the AFM system in Section 2.4, assum-
ing zero initial conditions and taking the Laplace transform of Equation
2.3 yield

1
Xi(s) = WF(S)'
-1

7’1’1252 Tr sz ar k2

L(s) = x1(s) — x2(s) =

Xo(s) = E(s), (3.16)

(WIZ Sin ml)s2 + bys + kz
m152(mas2 + bys + ky)

Eliminating F(s) and X(s) from the above equations, we can get the
transfer function from L(s) to Xi(s) in the second-order model:

X1(S) _ stz ar l’)zS ar kz
L(s) (my+m1)s2+bys+ky

Gi(s) = (3.17)

Let a)é = kz/(ml + 1112), C= bz/(Z\/kz(ml + mz), and o = mz/(ml + le).
We can write the above transfer function in terms of the resonant
frequency wp, damping ratio C, and mass ratio a:

2 2
as” +2Cwps + w
Gi(s) = 0

. 3.18
s2 +2Cwos + a)é (318)

For the fourth-order system model, taking the Laplace transform of
Equation 2.4 and assuming zero initial condition yield

X1(s)(m1s® + bis + k1) — Xo(b1s + k1) = F(s),

(3.19)
Xo(s)(m2s% + (b1 + ba)s + (k1 + k) — Xa(s)(b1s + k1) = —F(s).
Eliminating X,(s) and simplifying, we can get
X s2 + 20,wrs + w?
Gals) =) S 5 (3.20)
F(S) m1(52 +2C1wqs + wl)(sz + 2C3w3s + a)3)
where [1]
my (b1 + by) + myb
2Gror + Cywog) = LT 02+ sby
nmqimy
k1 + ko) + maky + b1b
a)% + A0, Cawyws +a)§ _ my(kq 2) + maky 1 2/
mimniyp
bk, + bok
ACw@? + W Cwz) = ———271
nmqimnip
W = 12

mymy

[1]: Schitter et al. (2007), Design and Model-
ing of a High-Speed AFM-Scanner

44 | 3 Laplace and Z Transforms

6: Equation 3.15 restated for reference:

d”y dn—l
an +ap— dpit +-+myt+aoy =
d™u amluy

b +0m-1 +-+brit+bou,

dagm b dgm=1

Usually, the mass m; is smaller than m, and the spring constant k; is
much larger than ky, which give the following frequencies:

k
R (3.21)
Wy =,%, (3.22)
ws ~ (3.23)

where w; is approximately the same as wy.

When the poles of a transfer function G(s) are on the left half of the complex
plane, the system is stable. Then we can evaluate the steady-state gain, also
known as the DC gain - the ratio of the output to a constant input after all
transients have decayed. Two methods exist. First, by definition, u and y
are all constant at the steady state; all the derivative terms in Equation 3.15
are thus zero. ® Let the steady-state values of u and y be, respectively, us;
and yss. Then Equation 3.15 gives,

0
aoYss = bouss = Yss = a_uss-
0

The DC gain is thus bg/a. We can also use the Final Value Theorem to find
the DC gain of a system. Let the input be a unit step, namely, 1/s in the
Laplace domain. Then by definition, the final value of a stable system’s
output will equal the DC gain. We have

1
DC gain of G(s) = 212(1] sY(s) = lig(leG(s)g = }12(1) G(s) = Z—g.

In MATLAB and Python, the following codes demonstrate the computation
of the DC gain:

% laplacezZtransforms/CIDCgain.m

s = tf('s');
G = (2%s+3)/(4%s/2+3%s+1);
dcgain(G)

laplacezZtransforms/CIDCgain.py
import control as ct

s = ct.tf('s")

G = (2*%s+43)/(4*s**2+3*%s+1);
print(ct.dcgain(G))

The result is as follows, which is precisely the value of G(s)|S:0.
3.0

Note that the DC gain is well defined for stable systems. The following
codes will tell that the DC gain of = is —1.5. However, when plotting the
step response, it is observed that the output does not even converge!

% laplacezZtransforms/CTDCgain_caution.m
H = tf([0 3],[1 -2])

dcgain(H)

figure, step(H)

laplaceZtransforms/CIDCgain_caution.py
import control as ct

H = ct.tf([0, 3],[1, -2])
print(ct.dcgain(H))

T, yout = ct.step_response(H)

print (yout)

3.4 The Z Transform

The Z transformation is a powerful tool to solve a wide variety of Ordinary
difference Equations (OdEs). In control engineering, the Z transformation
is used for discrete-time sequences and is analogous to Laplace transform
for continuous-time signals.

3.4.1 Definition

Let f (k) be a real discrete-time sequence thatis zero if k < 0. The (one-sided)
Z transform of f(k) is

F2) 2 T{f00} = 3 flR)z*
k=0
=fO)+fMz '+ f(2)z72+...,

where z is a complex variable and must be such that the summation on the
right-hand side converges.

(3.24)

Recall from calculus that:

1
1-y

» the infinite series 1 + y + % + ... converge to for|y| < 1,% and
1_),N+1

1=y

» the finite series 1+y +)2+---+yN equals 2}, y¥ =

From the above, we can evaluate the Z transform of many discrete-time
sequences.

Example 3.4.1 Consider the Z transform of the geometric sequence
{ak};"zo. We have

= 1 z
F{a*} =D akz 7k = =
{a™) kZ:(; 1-az71

zZ—a

for [az7Y| < 1 (2| > |a]).

In MATLAB, the Z transform can be obtained via the following codes:
% laplaceZtransforms/simpleZtransform.m
syms a k;

f = ark;
F = ztrans(f)

The result is as follows:

ify #1.

3.4 The Z Transform | 45

7: The Z transform is also a linear operator.
By using the definition, you should be
able to show that given real numbers a
and B, % {af (k) + pg(K)} = T {f ()} +
BZ {3(k)}.

8: |x| < 1is called the region of conver-
gence (ROC).

46 | 3 Laplace and Z Transforms

F =
-z/(a - z)
An equivalent Python implementation is:

laplaceZtransforms/simpleZtransform.py
import lcapy as lc

from lcapy.discretetime import n

import sympy

a = sympy.symbols('a')

f = a**n
F = £.ZT()
print (F)

which yields the same Z transform:

z/(-a + z)

Example 3.4.2 Consider the step sequence (discrete-time unit step

function):
1, Vk=1,2,...
1(k) =
0, Vk=...,-1,0.

Its Z transform is Z{1(k)} = ‘I{ak}|a:1 =1 = & for |z| > 1.

="

Example 3.4.3 The Z transform of the discrete-time impulse

6(k)={1, k=0,

0, otherwise.

isE{0(k)}=1+0-z1+0-z272+..- =1,

Example 3.4.4 For f(k) = e/**, the Z transform is

= 1
Fiz)= > lefokgh = -
@ kZ=0 1-elwz-1
1

1—(cos wz™1) —j(sinwz™)

_ 1—(coswz™!) +j (sinwz™")

1—2(cosw)z™! + z72
z(z — cosw + j sinw)

z2 —2(cosw)z + 1

Noting that elvk = cos wk + jsin wk, from the Z transform of el@k we
have

f(k) F(z)

zsinw
z2-2(cos w)z+1
z(z—cos w)
z2-2(cos w)z+1

sin wk

cos wk

Example 3.4.5 For a periodic sequence, f(k + N) = f(k), where N is the
period, we have

F(z) = f0) + f()z" ... f(N = 1)z~N-D
+f(N)zN + (N + 1)z N+
= f0)+ f()z ... f(N = 1)z~ N-D
+fO0)zN + fQ)z~WN 4.
= fO)A+zN+z2N 4)
+ Mzt A+z N +27N+).,

+f(N=-1Dz W VA 42N 427N 4)

= 1 [f(o) + f(l)z‘l +...+ f(N - 1)2—(N_1)] .

1-zN

3.4.2 Relevant Properties

Similar to the Laplace transform, the Z transform has nice properties that
provide conveniences in system analysis. Let £{ f(k)} = F(z) and f(k) =0
Vk < 0. We have

1. Time-Shift Theorem: When the signal has a one-step delay, we have
E{f(k=1)}
=2 fle-1)zF = (Z flle— 1)z‘k) +f=1)
k=0 k=1

= (i = 1)z—<k-1>z-1) + (1)
k=1

=2'F(2)+ f-1) = |2 'F(2)

where f(—1) = 0 as f(k) was assumed causal.
Analogously, if the signal has a one-step advance, then

E{f(k+1)} = i Flk + 1)z—k\ = 2F(z) — zf(0) \
k=0

More generally, you should be able to derive that

E{f(k—i)} =z F(z), i>0,

F{f(k+i)} =z'F(z) - ;:1 ZJfi-j), i>0. (3.25)

2. Convolution: Let Fi(z) and F(z) be the Z transforms of f1(k) and

3.4 The Z Transform

47

48 | 3 Laplace and Z Transforms

You should be able to prove the fact by
definition.

fa2(k), respectively. Then

Fi2)Fa(2) = {i fl(i)z"} {i fz(j)Z"} (.26

i {Z filk - 1)f2(1)} =Z {fi(k)+ fr(k)},

k=0

where * denotes the convolution sum in the discrete-time domain.

. Initial Value Theorem:

f(0) = lim F(2). (3.27)

. Final Value Theorem: If limj_, f(k) exists, then

lim £(k) = lim(z - DF(2). (3.28)

To see the result, notice that if limy_,. f(k) = fw exists, then

i [f(k+1)= f (k)] = foo — £(0).

k=0

We have, on the one hand,

lim >z~ [f (k+1) = f ()] = 3 [f (k+ 1) = £ (k)]
k=0 k=0
and on the other hand,

D1z [fk+1) - f (k)] = zF(z) - 2f(0) - F(2).

k=0

Thus fe — f(0) = lim;—; [zF(z) -zf(0) - F(z)] , which gives Equa-
tion 3.28.

. Z-domain scaling:

F {a*f(k)} =F(a'z).

. Differentiation: dF()
z
Z {kf (k)} =
For example, the time-scaled geometric sequence k(0.5)% can be
obtained by —z—— d‘:z{o 5 _ —Z% = z (Zog 57/ as verified below:

% laplaceZtransforms/timescaledGeometricSeqZ.m
syms Kk;

f = 0.57k;

F = ztrans(f)

f1 k+f;

F1 ztrans(£f1)

which yield

F =
z/(z - 1/2)
F1 =
(2%2)/(2%z - 1)A2

Equivalent results can be obtained in Python:

laplaceZtransforms/timescaledGeometricSeqZ.py
import lcapy as lc

from lcapy.discretetime import n

£=0.5%%n

print (£f)

F = £.ZT()

print (F)

f1 = n*f
print (£1)
F1 = £f1.ZT()
print (F1)

which give

(1/2)**n
2%z/(2%z - 1)
n/2%*n

2%7/(2%z - 1)%%2

7. Time reversal:
Z{f(-h}=F(").
Table 3.2 below summarizes the common Z transform properties and
example applications. As we observe, Laplace and Z transforms share

many styles of properties such as initial and final value theorems. Table 3.3
provides the common Z and Laplace transforms in a unified view.

3.4 The Z Transform

49

50 | 3 Laplace and Z Transforms

Table 3.2: Common properties of the Z

transform. x (k) z {x (k)}
ax (k) aX (z)
axiy (k) + bxo (k) aXi1(z)+bX5(z)
x(k+1) zX (z) — zx (0)
x (k+2) 22X (z) — 22 (0) — zx (1)
x(n+k) ¥ X (z) = 22 (0) = zF"'x (1) - . ..
—zx(k-1)
x(n—k) z7kX (z)
kx (k) —Z%X (2)
e~ kx (k) X (ze%)
akx (k) X (%)
ka*x (k) —zLX ()
x (0) lim,_,e X (z) if the limit exists
x (c0) lim, 1 [(1-z7Y) X (2)]

if (1 —z71) X (z) is analytic
on and outside the unit circle
x(k)—x(k-1) (1-z1)X(2)
x(k+1)—x(k) (z-1)X(z)—zx(0)
S x (k) = X (2)
k™x (k) (-z4)" X (2)
Zpox(K)y(n-k) X(2)Y(2)
2, % (k) X (1)

3.4 The Z Transform

51

Table 3.3: Table of Laplace and Z transforms [5]. x(f) = 0 for t < 0. x(kT) = x(k) = 0 for k < 0. Unless otherwise noted, k =0,1,2,3, ...

X(s) x(t) x(kT) or x(k) X(z)
5(k) 1
o(k — ko) z ko
1 1
5 1(t) 1(k) r—
1 et e—ukT 1
sl+11 1_Te—lleZ—l
1 z
1 t kT e
2 2 2 T?2z71(1+z71)
$3 i (T) 3(13271)3 1,,-2
6 3 3 Tz (1+4z7 +27%)
I t (kT) — —
a _ -at _ —akT (1—e~M)z!
s(s+a) l—e T-e (1=zD)(1—e—Tz 1)
b-a et _ p-bt o—KT _ p—bKT (e —e ')z~
(s+a)(s+b) (1_C—aTTZ—11)(1_e—hTZ-1)
1 ¢ —at —akT Te "'z~
—_ e kTe P r—
(s+a)? (1_e—uTZ—1)2
s 1— —at _ —akT 1-(1+aT)e™ 7!
at)e 1—akT)e —_—
e (-ane™ (1-akT) el
2 2p-at (kT)2 e~k T?e T (1+e Tz ")z
(S+a)3 (1_€—aTZ—1 3
2 aT-1+e"T)+(1—eT—aTe~T)z 1|21
2 at—1+e™ gkT —1+ ¢ 7T L()1(2 —)=
s2(s+a) : (1-z-1) (1—8‘” z~)
T sinwt sin wkT T Tt
1-z"" coswT
vy cos wt cos wkT W
@ at o; —akT ; e "z~ sinwT
Craye? e~ sin wt e sin wkT P e v ey o
s+a —at —akT 1-e~Tz71 cos wT
Crafear e~ cos wt e cos wkT T T T oos oo T oo T2
k 1
a 1
1-az1
kak-1 271
(1—az 1)
K2gk1 z71(1+az7t)
(1-az-1)
_ 27 (1+4az " +a?272
k3ak 1
(1—az-1)*
k4 k-1 z'l(1+11az‘l+11u22'2+a3z'3)
a (1—az-1y
ak cos kmt

1+az7!

52 | 3 Laplace and Z Transforms

Be careful with the partial fraction expan-
sion.

3.4.3 Applications to Dynamic Systems

With the Z transform, the calculus operators in discrete-time domain are
replaced by the algebraic operation in the Z domain. For example, consider
the following first-order system,

x(k+1)—ax(k) = bu(k), x(0) =0. (3.29)
Applying the Z transformation yields

zX(z) — zx(0) —aX(z) = bU(z) = X(z) = %U(z), (3.30)
where X(z) = £(x(k)) and U(z) = E(u(k)). If u(k) is a unit step function
u(k) =0for k < 0and u(k) =1 for k > 0, then

b z b z z
X(z) = - { - } . 31
(2) z—az—-1 1-alz-1 z-a (3.3)
Now applying the inverse Z transformation yields
x(k) = -2 (1 - uk) (3.32)
T 1-a ‘ ‘

The development above shows that one way to obtain the solution of linear
difference equations is to use the Z transformation. This is analogous to
the continuous-time case where the solution of linear differential equation
can be obtained by using the Laplace transformation.

Example 3.4.6 Let us use the Z transform to solve the difference equation
y(k) +3y(k — 1) + 2y(k —2) = u(k - 2), (3.33)
where y(-2) = y(-1) = 0 and u(k) = 1(k). From the Time-Shift Theorem:

F{y(k-2)} =F{y(k-1-1)} =z "E{y(k - 1)} + y(-2)

= @Y (@) + y(-1) + y(-2). (339

Taking Z transforms on both sides of Equation 3.33 and applying the
initial conditions yield

(1+3z71 +2z72)Y(2) = z2U(2)
1 1 (3.35)

= Y(Z) = mu(Z) = mu(Z)

The step input u(k) = 1(k) has a Z transform of U(z) = 1/(1 — z7}).
Hence,

z _1 z +1 z _1 z
z-1D(z+2(Ez+1) 6z-1 3z+2 2z+1

Y(z) =
Inverse Z transform then gives

y(k) = %1(1@ + %(—z)k - %(—1)", k > 0.

3.5 From Difference Equation to Discrete-Time Transfer Functions

Example 3.4.7 (Finance and Mortgage) As another example, difference
equations rise naturally in a mortgage payment. Consider borrowing
$100,000 for a mortgage with an 4 percent annual percent interest rate
(APR). If we plan to pay off in 30 years with fixed monthly payments,
what will be the monthly payment?

Let k be the number of months in debt, and y(k) be the remaining
debt to be paid. The initial debt of $100,000 yields y(0) = 100, 000.
Translating the 4 percent APR to a monthly percent rate (MPR), we have
MPR = %2% = 0.0033. The governing equation for the remaining debt is

y(k+1) = (1+ MPR)y (k) - b 1k). (3.36)
S S~
a monthly payment

Applying the Z transform yields

0 - ——2

zZ—a z—al—-2z1
. .) (3.37)

b
= 0) + —
1—az‘1y() 1—11(1—112—1 =

Y (z) =

Inverse Z transform now gives

¥ () = a*y(0) + = f y (ak - 1) : (3.38)

To pay off in 30 years, the terminal condition is y(N) = 0 where N = 30 X
N =

12 = 360 months, yielding aNy(0) = —t& (aN - 1) = b = % =

$477.42.

3.5 From Difference Equation to Discrete-Time
Transfer Functions

Consider the difference equation:

y(k)+ay1y(k=1)+ - -+aoy(k—n) = bpu(k+m—n)+- - -+bou(k—n), (3.39)

where u(k) is a known input sequence. Assume that y(k) = 0 Vk < 0. We
now generalize the concept at the start of Section 3.4.3. Applying the Z
transform to each term yields

Y(z)+ay 127 Y (2) + -+ a0z Y (2) = bz " U(2) + -+ - + boz MU (2),

(3.40)

and thus,
bz "M 4+ bz "

T l4ap,qzl 4 +agz "

Y(z)

or equivalently,

Y(z) = S U(z). (3.42)
. .

U(z), (3.41)

53

54 | 3 Laplace and Z Transforms

Table 3.4: Comparison of continuous- and
discrete-time transfer functions.

Notice that two forms (one in z~! and the other in z) of the discrete-time

transfer function have been given. Poles, zeros and the realizability condi-
tion m < n are similarly defined as the continuous-time case. Realizability
implies that the present output depends on past and present inputs but
not on future inputs.

When applying a constant input to a discrete-time system, if the output
reaches a constant steady state after the transient response, the ratio between
the output and the input is the DC gain of the system. At the steady state,
yk)=yk-1)=---=ylk-n) = yssandu(k+m—-n) =u(k+m-n-1) =
-+« =u(k —n) = uss. Equation 3.39 becomes

Yss + An-1Yss + -+ T aA0Yss = bimiss + -+ + boutss.
Thus,

b + b1+ +bo
1+ap1+---+ap

DC gain of Gy, (z) =

7

which is nothing but G, (Z)’z:r

We have the following comparison of continuous- and discrete-time transfer
functions in Table 3.4.

Properties Gyu(s) = % Gyu(z) = %
poles roots of A(s) roots of A(z)

Zeros roots of B(s) roots of B(z)

causality condition n > m nx=m

DC gain (if exists) ~ Gy,(0) Gyu(1)

The following codes demonstrate the construction and basic analysis of
a discrete-time transfer function in MATLAB and Python. Different from
the continuous-time system description, a sampling time must now be
specified to indicate the actual time difference between the discrete-time
indices k and k + 1.

% laplacezZtransforms/transfer_fun_dt.m
num = [0.09952, -0.08144];

den = [1, -1.792, 0.8187];

Ts = 0.1; % sampling time

sys_tf = tf(num,den,Ts)

poles = pole(sys_tf);

zeros = zero(sys_tf);

disp(['System Poles = ',num2str(poles')])
disp(['System Zeros = ',num2str(zeros')])

[yout, T] = step(sys_tf);
figure, stairs(T, yout)
figure, impulse(sys_tf)

ul = 2*ones(length(T),1);
u2 = sin(T);

figure, lsim(sys_tf,ul,T)
figure, lsim(sys_tf,u2,T)

laplacezZtransforms/transfer_ fun_dt.py
import control as ct
import matplotlib.pyplot as plt

3.5 From Difference Equation to Discrete-Time Transfer Functions

import numpy as np
Ts = 0.1 # sampling time

num = [0.09952, -0.08144] # Numerator co-efficients
den = [1, -1.792, 0.8187] # Denominator co-efficients

sys_tf = ct.tf(num,den, Ts)
print(sys_tf)

poles = ct.pole(sys_tf)
zeros = ct.zero(sys_tf)
print('\nSystem Poles = ', poles, '\nSystem Zeros = ', zeros)

T,yout = ct.step_response(sys_tf)

Plot the response

plt.figure(1l,figsize = (6,4))

instead of plt.plot(T,yout), we use step to show the discrete nature

— of the response

plt.step(T,yout)

at the time of writing this code, there is a difference between how
MATLAB and Python make stair plots

to correctly show the initial one-step delay, we need to append a

— zero at the beginning of the output

plt.step(T,np.append(0,yout[0:-1]))

plt.grid(True)
plt.ylabel("y")
plt.xlabel("Time (sec)")
plt.show()

T,yout i = ct.impulse_response(sys_tf)

Plot the response
plt.figure(1,figsize = (6,4))
plt.step(T,np.append(0,yout_i[0:-1]))

plt.grid(True)
plt.ylabel("y")
plt.xlabel("Time (sec)")
plt.show()

ul = np.full((1,len(T)),2) #Create an array of 2's, equal to 2*step
u2 = np.sin(T)

T,yout_ul = ct.forced_response(sys_tf,T,ul) # Response to input 1
T,yout _u2 = ct.forced_response(sys_tf,T,u2) # Response to input 2

plt.figure(2,figsize = (6,4))

plt.step(T,np.append(0,yout_ul[0:-1]))
plt.step(T,np.append(0,yout_u2[0:-1]))

plt.grid()

plt.xlabel("Time (sec)")
plt.ylabel("y")

plt.legend(["Input 1","Input 2 (sin)"])
plt.show()

The first part of the results from Python are as follows. You should be able
to implement the code and observe the different response figures.

55

56

3 Laplace and Z Transforms

0.09952 z - 0.08144

System Poles [0.89640.12603174j 0.896-0.12603174]]

[0.81832797+0.3]

System Zeros

3.6 Recap

In this chapter, we reviewed Laplace and Z transforms, along with their
applications to control systems.

The Laplace transform is defined by & { f (t)} = fow e st f (t) dt, subject to
existence conditions. Based on the definition, we derived that the elemental
1

Laplace transform pair of the exponential function: & {e’”} = ;—. From

there, using Euler formula, we can obtain the Laplace transforms of the sine

and cosine functions: £ {cos wt} = 77— and £ {sinwt} = 7. These

functions have second-order Laplace transforms because they consists
of two exponential functions: e.g., coswt = 1 (e/“! + /%), hence the
second-order nature in the s domain. Laplace transform has excellent
properties such as the differential property:

d
< {Ef(t)} =sF(s)-f(0),
the integration property:

F(s)
s

g{/otf(f)ch} =z{1(t)+f ()} =

frequency shifting:
Z{e"f(t)} =F(s~a),
time shifting:
7 {f(t—a)l(t—a)} =e "F(s),
and frequency differentiation:
d"X (s)
dsm

z{t"ft)} ="

Now that we have learnt the convolution property, the integration
property can be proven by using properties of the unit step function:

t 0
/ f(T)d’L’=/ 1(t—-7)f(7)dr
0 - (3.43)

=/t1(i’—T)f(T)d’l’,
0

where we used the facts that: () 1(t —7) = 0if t > ¢, (ii) 1 (t —) = 1 if
T < t,and (iii) f (7) = 0if 7 < 0. The quantity on the right side of the
equation is nothing but convolution of the unit step function and f (t).

The Z transform is defined by F {x (k)} = X2 x (k) z~k. By definition,
it is easy to compute the Z transform of the unit step and for the geo-

metric sequence: £ {1 (k)} = 1_12,1 =%, |zl <land Z {ak} = 1_’112,1 =
=, az‘1| < 1. The Z transform has excellent properties such as: time
shifting:

Z{x(k-na)} =2z"X(2),

z-domain scaling:

% {a*x(k)} =X (a7'2),
and differentiation: iX (2)

z
E {kx (k)} = —z———.
{lex ()} = -2

With Laplace and Z transforms, we can easily obtain solutions to ordinary
differential and difference equations, as well as obtain the transfer function
of an LTI system. Subsequent transfer function analyses can reveal powerful
characteristics of the system dynamics, such as poles and zeros, stability,
and DC/steady-state gains.

3.7 Exercise

1. Consider the following two by two matrix:

-5 2
a7 2]
a) Obtain the eigenvalues and eigenvectors of the matrix.

b) Obtain the rank of the matrix analytically, and confirm your
solution by using MATLAB or Python.

2. Obtain the inverses of the following matrices

s 1 s 6 0
M=[k JoN=|2 s-1 0 |,

mo S Fwm 0 0 s+1
3. Find the Laplace transform of the function f(t) = 2te™>.
4. Find the inverse Laplace transform of the function F(s) = (s +3)/(s*+

4s +5).

5. Find the Laplace transform of the function f(t) = sin(2f)1(¢).
6. Find the Laplace transform of the function f(t) = te > cos(3t).
7. Find the Laplace transform of the function f(t) = #2.
8. Find the Z-transform of the function f(k) = 2¥1(k).
9. Find the inverse Z-transform of the function F(z) = (z+2)/(z2—2z+3).

10. Find the Z-transform of the function f(k) = k%(0.5).
11. Find the Z-transform of the function f (k) = cos(0.2m)1(k).
12. Find the inverse Z-transform of the function F(z) = (z2—z+1)/(z—1).

3.7 Exercise

57

58 | 3 Laplace and Z Transforms

13. Let 2 {f(t)} = F(s). Show that

£
2 (oD) = F) - [2 2 1] Y
£ 0)

14. Solve the ordinary differential equation ¥ + 3x = 1(¢) where x(0) = 0.

15. Show that if G(s) is strictly proper, then G(c0) = 0.

16. Obtain the time-domain expression of the following Laplace- and
Z-domain functions:

1 Tz 1

(s +a)*’ (a - 2—1)2‘

17. Obtain f (t) if F (s) = (s + 10) /(s* + 25 +5).

18. Show that for systems with relative degree greater than or equal to
zero, the impulse response always converges to 0.

19. Solve the ordinary differential equation ¥ + a;x + a,x = 0 where
a1 =2anda2 =1.

20. Obtain the Laplace or Z transforms of the following time functions.

a) Continuous-time periodic function: f(f) = f(t — T), assuming
{f(r)| 0 < 7 <T}isgiven.

b) Discrete-time periodic function: f(k) = f(k — N), assuming
{f(j)10<j < N —1}is given.

21. The Laplace transform of f(t) is expressed as

(K1 — KzT)S + (K1 - Kz)
s(ts+1)(s+1)

F(s) =

Assume T > 0 in this problem (think about what happens if this is
not satisfied).

a) Use the initial value and final value theorems to obtain the con-
ditions so that f(f) possesses a negative initial slope (derivative)
and a positive final value.

b) Note that f(t) is regarded as the unit step response of the system
described by

(K1 = Kz1)s + (K1 = K»)
(ts+1)(s+1)

G(s) =
Assume the following values of the system parameters:
K1=2, K2=1, T=4.

Obtain the time plot for f(f) by MATLAB or Python or Julia.
22. Given a Z transform
51
(1-2z"1)(1-1.4z"1+0.48z72)"

X(z) =

determine the initial and final values of x(k), the inverse Z-transform
of X(z). Find x(k) in a closed form.

3.7 Exercise 59

23. Let f (f) be a function that has convergent Laplace transform and
f(0+) * f(O_).g Based on the definition F (S) = foio f (t) E_Stdt, 9: ie., f(t) has a first-kind discontinuity
a) show that lims_,. F (s) = f (0*) # £ (07) atr=0.
b) which oneis true: £ {%f (t)} =sF(s)-f(07)or<Z {%f (t)} =
sF (s) — f (0%)? Justify your choice.

	Modern Control Essentials
	Preface
	About the Authors
	Contents
	Introduction
	The Power of Controls
	Relevant Terminologies
	The Objectives and The Means of Controls
	Societies to Learn More about Controls

	System Description
	Modeling
	Methods of Modeling
	Continuous-Time Systems
	Discrete-Time Systems
	Example: Atomic Force Microscopy
	Example: Hard Disk Drive and Information Storage
	Model Properties
	Nonlinear Systems
	``All Models are Wrong, but Some are Useful''
	Exercise

	Laplace and Z Transforms
	The Laplace Transform
	Inverse Laplace Transform and Partial Fraction Expansion
	From Laplace Transform to Transfer Functions
	The Z Transform
	From Difference Equation to Discrete-Time Transfer Functions
	Recap
	Exercise

	State-Space Description of a Dynamic System
	The Concept of States
	General State-Space Descriptions
	From the State Space to Transfer Functions
	Linearization and State-Space Representation of Nonlinear Systems
	Recap
	Exercise

	State-space Realizations: The Canonical Forms
	Controllable Canonical Form
	Observable Canonical Form
	Diagonal and Jordan Canonical Forms
	Discrete-Time LTI Systems and Their State-Space Canonical Forms
	Similar Realizations
	Recap
	Exercise

	Solution of Time-Invariant State-Space Equations
	Continuous-Time State-Space Solutions
	Discrete-Time LTI State-Space Solutions
	Explicit Computation of the State Transition Matrix eAt
	Explicit Computation of the State Transition Matrix Ak
	Transition Matrix via Inverse Transformation
	Solutions of Time-Varying State Equations
	Recap
	Exercise

	Discrete-Time Models of Continuous Systems
	Sampler and Signal Holding
	State-Space Models
	Transfer-Function Models
	Exercise

	System Properties
	Stability
	Definitions
	Stability of LTI Systems
	Lyapunov's Approach to Stability
	Lyapunov Stability Theorems
	Recap
	Exercise

	Controllability and Observability
	Basic Concepts
	The Case for Discrete-Time Systems
	The Case for Continuous-Time Systems
	Transforming Single-Input Controllable Systems Into the Controllable Canonical Form
	Transforming Single-Output Observable Systems Into the Observable Canonical Form
	Recap
	Exercise

	Kalman Decomposition
	Basic Concepts
	Kalman Decomposition of Uncontrollable Systems
	Kalman Decomposition of Unobservable Systems
	General Kalman Decomposition, Stabilizability, and Detectability
	Recap
	Exercise

	Estimation and Control
	State Feedback
	State Feedback and Eigenvalue Assignments
	Numerical Tools
	Output Feedback
	Recap
	Exercise

	Observers and Observer-State Feedback
	Open-Loop Observer
	Continuous-Time Luenberger Observer
	Observer State Feedback Control
	Discrete-Time Observers
	Reduced-Order Observer
	Recap
	Exercise

	Linear Quadratic Optimal Control
	Problem Formulation
	Solution of the Continuous-Time LQ Problem
	Stationary Continuous-Time LQ Problem
	Application and Practice
	Further Development of the Continuous-Time LQ Regulator
	Discrete-Time LQ Optimal Control
	Further Development of the Discrete-Time LQ Regulator
	Recap
	Exercise

	Stochastic Estimation and Control
	Review of Probability Theory
	Sample Space, Events, and Probability Axioms
	Random Variables, Probability Density, and Moments of Distributions
	Example Distributions
	Random Vector, Joint Probability and Distribution, Conditional Probability
	Discrete-Time Random Process
	Continuous-Time Random Process
	Recap
	Exercise

	Least Square Estimation
	General Solution
	Solution in the Gaussian Case
	Properties of Least Square Estimate (Gaussian Case)
	Example Application of Least Square Estimation
	Recap
	Exercise

	Stochastic State Estimation and Kalman Filter
	Review of State Observers
	Discrete-Time Stochastic State Estimation
	Continuous-Time Stochastic State Estimation
	Kalman Filter Application: Kinematic Kalman Filter
	The Kalman Filter Equations using Other Notation Systems
	Recap
	Exercise

	Linear Quadratic Gaussian (LQG) Optimal Control
	Stochastic Control with Exactly Known State
	Continuous-Time LQG Problem
	Recap
	Exercise

	Further Readings

	Appendix: Review of Relevant Linear Algebra
	Basic Concepts of Matrices and Vectors
	Linear Systems of Equations
	Vector Space, Linear Independence, Basis, and Span
	Matrix Properties
	Eigenvalues and Eigenvectors
	Matrix Inversion
	Spectral Mapping Theorem
	Matrix Exponential
	Inner Product
	Vector Norms
	Symmetric and Orthogonal Matrices
	Positive-Definite Matrices
	Singular Value Decomposition (SVD)
	Induced Matrix Norm

	Appendix: How to Install and Run Python
	Alphabetical Index

% c2d/dteigenvalue.m
m = 1;
dt = 0.1;
A = [0 1;0 0]; B = [0;1]; C = [1/m 0]; D = 0;

G_s = ss(A,B,C,D);
G_z = c2d(G_s, dt,'zoh');

G_z.A

% eigenvalues of continuous-time system
eig(A)
% eigenvalues of discretized system
eig(G_z.A)

c2d/dteigenvalue.py
Discretization of continuous-time state-space systems in Python
import control
import numpy

m = 1
dt = 0.1
A = [[0, 1], [0, 0]]
B = [[0], [1]]
C = [[1/m, 0]]
D = 0

G_s = control.ss(A, B, C, D)
G_z = control.c2d(G_s, dt, 'zoh')

print(G_z.A)

eigenvalues of continuous-time system
eigA, eigvecA = numpy.linalg.eig(A)
print(eigA)

eigenvalues of discretized system
eigAd, eigvecAd = numpy.linalg.eig(G_z.A)
print(eigAd)

% controllability_observability/connectedsys.m
A1 = [0 1; -2 -3]; B1 = [0; 1]; C1 = [2 1];
sys1 = ss(A1, B1, C1, 0)
P1 = ctrb(sys1)
rank(P1)
Q1 = obsv(sys1)
rank(Q1)

A2 = [-1 0; 0 -3]; B2 = [1; 1]; C2 = [1 1];
sys2 = ss(A2, B2, C2, 0)
P2 = ctrb(sys2)
rank(P2)
Q2 = obsv(sys2)
rank(Q2)

sys_s = series(sys1,sys2)
sys_p = parallel(sys1,sys2)
Ps = ctrb(sys_s)
rank(Ps)
Qs = obsv(sys_s)
rank(Qs)

Pp = ctrb(sys_p)
rank(Pp)
Qp = obsv(sys_p)
rank(Qp)

controllability_observability/connectedsys.py
import control
import numpy as np

A1 = [[0, 1], [-2, -3]]
B1 = [[0], [1]]
C1 = [[2, 1]]
sys1 = control.ss(A1, B1, C1, 0)
P1 = control.ctrb(A1,B1)
print(np.linalg.matrix_rank(P1))
Q1 = control.obsv(A1,C1)
print(np.linalg.matrix_rank(Q1))

A2 = [[-1, 0], [0, -3]]
B2 = [[1], [1]]
C2 = [[1, 1]]
sys2 = control.ss(A2, B2, C2, 0)
P2 = control.ctrb(A2,B2)
print(np.linalg.matrix_rank(P2))
Q2 = control.obsv(A2,C2)
print(np.linalg.matrix_rank(Q2))

sys_s = control.series(sys1, sys2)
sys_p = control.parallel(sys1, sys2)

Ps = control.ctrb(sys_s.A, sys_s.B)
print(np.linalg.matrix_rank(Ps))
Qs = control.obsv(sys_s.A, sys_s.C)
print(np.linalg.matrix_rank(Qs))

Pp = control.ctrb(sys_p.A, sys_p.B)
print(np.linalg.matrix_rank(Pp))
Qp = control.obsv(sys_p.A, sys_p.C)
print(np.linalg.matrix_rank(Qp))

% controllability_observability/controllability_matrix.m
A = [0.4 0.4 0 0; -0.9 -0.07 0 0; 0 0 0.4 0.4; 0 0 -0.9 -0.07];
B = [0.3 0.4 0.3 0.4]';
P = ctrb(A,B);
rank(P)

controllability_observability/controllability_matrix.py
import numpy as np
import control as ct
A = np.array([[0.4, 0.4, 0, 0], [-0.9, -0.07, 0, 0], [0, 0, 0.4, 0.4], [0, 0, -0.9, -0.07]])
B = np.array([[0.3], [0.4], [0.3], [0.4]])
P = ct.ctrb(A,B)
rankP = np.linalg.matrix_rank(P)
print(rankP)

% kalman_decompose/uncontrollablesys.m
b = 1; m = 1;
k1 = 0.5; k2 = 1;
A = [-b/m, -1/m, -1/m; k1, 0, 0; k2, 0, 0];
B = [1/m; 0; 0];
P = [B, A*B, A^2*B]
disp(['The rank of P is: ', num2str(rank(P)), '. Hence the system is not controllable.']);
disp('1. Construct M manually.');
Mc = [1 -1; 0, k1; 0, k2];
Muc = [0;0;1];
M = [Mc Muc]
invM = inv(M)
tildeA = invM*A*M
tildeB = invM*B
disp('2. Construct M based on orthonormal decomposition.');
Mc = orth(P)
Muc = null(P')
M = [Mc Muc]
rank(M)
tildeA = M\A*M % this computes inv(M)*A*M
tildeB = M\B % this computes inv(M)*B

kalman_decompose/uncontrollablesys.py
import numpy as np
import control as ct
from scipy.linalg import orth
from scipy.linalg import null_space
b = 1
m = 1
k1 = 0.5
k2 = 1
A = np.array([[-b/m, -1/m, -1/m], [k1, 0, 0], [k2, 0, 0]])
B = np.array([[1/m], [0], [0]])
P = ct.ctrb(A,B)
Mc = orth(P)
Muc = null_space(P.transpose())
M = np.column_stack((Mc,Muc))
print('M: ')
print(M)
tildeA = (np.linalg.inv(M)@A)@M
print('tilde A:')
print(tildeA)
tildeB = np.linalg.inv(M)@B
print('tilde B:')
print(tildeB)

% laplaceZtransforms/CTDCgain.m
s = tf('s');
G = (2*s+3)/(4*s^2+3*s+1);
dcgain(G)

laplaceZtransforms/CTDCgain.py
import control as ct
s = ct.tf('s')
G = (2*s+3)/(4*s**2+3*s+1);
print(ct.dcgain(G))

% laplaceZtransforms/CTDCgain_caution.m
H = tf([0 3],[1 -2])
dcgain(H)
figure, step(H)

laplaceZtransforms/CTDCgain_caution.py
import control as ct
H = ct.tf([0, 3],[1, -2])
print(ct.dcgain(H))
T, yout = ct.step_response(H)
print(yout)

% laplaceZtransforms/laplaceTimeDelay.m
syms t
d = dirac(t-4);
D = laplace(d)

D =
exp(-4*s)

laplaceZtransforms/laplaceTimeDelay.py
import sympy
t, s = sympy.symbols('t, s')
d = sympy.DiracDelta(t-4)
D = sympy.laplace_transform(d, t, s, noconds=True)
print(D)

% laplaceZtransforms/partial_fraction_expansion.m
syms s
G = 32/s/(s+4)/(s+8)
partfrac(G)

laplaceZtransforms/partial_fraction_expansion.py
import sympy
s = sympy.symbols('s')
G = 32/s/(s+4)/(s+8)
print(sympy.apart(G))

% laplaceZtransforms/simpleZtransform.m
syms a k;
f = a^k;
F = ztrans(f)

laplaceZtransforms/simpleZtransform.py
import lcapy as lc
from lcapy.discretetime import n
import sympy
a = sympy.symbols('a')
f = a**n
F = f.ZT()
print(F)

% laplaceZtransforms/simplelaplace.m
syms a t
% exponential functions
f = exp(-a*t);
F = laplace(f)

F =
1/(a + s)

g = exp(-2*t);
G = laplace(g)

G =
1/(s + 2)
% ramp function
h = 2*t;
H = laplace(h)

H =
2/s^2
% impulse function
d = dirac(t);
D = laplace(d)

D =
1

laplaceZtransforms/simplelaplace.py
import sympy
t, s = sympy.symbols('t, s')
a = sympy.symbols('a', real=True, positive=True)
f = sympy.exp(-a*t)
F = sympy.laplace_transform(f, t, s, noconds=True)
print(F)

g = sympy.exp(-2*t)
G = sympy.laplace_transform(g, t, s, noconds=True)
print(G)

h = 2*t
H = sympy.laplace_transform(h, t, s, noconds=True)
print(H)

d = sympy.DiracDelta(t)
D = sympy.laplace_transform(d, t, s, noconds=True)
print(D)

% laplaceZtransforms/timescaledGeometricSeqZ.m
syms k;
f = 0.5^k;
F = ztrans(f)
f1 = k*f;
F1 = ztrans(f1)

laplaceZtransforms/timescaledGeometricSeqZ.py
import lcapy as lc
from lcapy.discretetime import n
f=0.5**n
print(f)
F = f.ZT()
print(F)

f1 = n*f
print(f1)
F1 = f1.ZT()
print(F1)

% laplaceZtransforms/transfer_fun.m
num = [1 2];
den = [1 2 3];
sys_tf = tf(num,den)
poles = pole(sys_tf);
zeros = zero(sys_tf);
disp(['System Poles = ',num2str(poles')])
disp(['System Zeros = ',num2str(zeros')])

[yout, T] = step(sys_tf);
figure, plot(T, yout)
figure, impulse(sys_tf)

u1 = 2*ones(length(T),1);
u2 = sin(T);
figure, lsim(sys_tf,u1,T)
figure, lsim(sys_tf,u2,T)

laplaceZtransforms/transfer_fun.py
import control as ct
import matplotlib.pyplot as plt
import numpy as np
Creating a transfer function system

num = [1,2] # Numerator co-efficients
den = [1,2,3] # Denominator co-efficients

sys_tf = ct.tf(num,den)
print(sys_tf)

Poles and zeros
poles = ct.pole(sys_tf)
zeros = ct.zero(sys_tf)
print('\nSystem Poles = ', poles, '\nSystem Zeros = ', zeros)

T,yout = ct.step_response(sys_tf)

Plot the response
plt.figure(1,figsize = (6,4))
plt.plot(T,yout)

plt.grid(True)
plt.ylabel("y")
plt.xlabel("Time (sec)")
plt.show()

T,yout_i = ct.impulse_response(sys_tf)

Plot the response
plt.figure(1,figsize = (6,4))
plt.plot(T,yout_i)

plt.grid(True)
plt.ylabel("y")
plt.xlabel("Time (sec)")
plt.show()

u1 = np.full((1,len(T)),2) #Create an array of 2's, equal to 2*step
u2 = np.sin(T)

T,yout_u1 = ct.forced_response(sys_tf,T,u1) # Response to input 1
T,yout_u2 = ct.forced_response(sys_tf,T,u2) # Response to input 2

plt.figure(2,figsize = (6,4))

plt.plot(T,yout_u1)
plt.plot(T,yout_u2)

plt.grid()
plt.xlabel("Time (sec)")
plt.ylabel("y")
plt.legend(["Input 1","Input 2 (sin)"])
plt.show()

% laplaceZtransforms/transfer_fun_dt.m
num = [0.09952, -0.08144];
den = [1, -1.792, 0.8187];
Ts = 0.1; % sampling time
sys_tf = tf(num,den,Ts)
poles = pole(sys_tf);
zeros = zero(sys_tf);
disp(['System Poles = ',num2str(poles')])
disp(['System Zeros = ',num2str(zeros')])

[yout, T] = step(sys_tf);
figure, stairs(T, yout)
figure, impulse(sys_tf)

u1 = 2*ones(length(T),1);
u2 = sin(T);
figure, lsim(sys_tf,u1,T)
figure, lsim(sys_tf,u2,T)

laplaceZtransforms/transfer_fun_dt.py
import control as ct
import matplotlib.pyplot as plt
import numpy as np
Ts = 0.1 # sampling time

num = [0.09952, -0.08144] # Numerator co-efficients
den = [1, -1.792, 0.8187] # Denominator co-efficients

sys_tf = ct.tf(num,den, Ts)
print(sys_tf)

poles = ct.pole(sys_tf)
zeros = ct.zero(sys_tf)
print('\nSystem Poles = ', poles, '\nSystem Zeros = ', zeros)

T,yout = ct.step_response(sys_tf)

Plot the response
plt.figure(1,figsize = (6,4))
instead of plt.plot(T,yout), we use step to show the discrete nature of the response
plt.step(T,yout)
at the time of writing this code, there is a difference between how MATLAB and Python make stair plots
to correctly show the initial one-step delay, we need to append a zero at the beginning of the output
plt.step(T,np.append(0,yout[0:-1]))

plt.grid(True)
plt.ylabel("y")
plt.xlabel("Time (sec)")
plt.show()

T,yout_i = ct.impulse_response(sys_tf)

Plot the response
plt.figure(1,figsize = (6,4))
plt.step(T,np.append(0,yout_i[0:-1]))

plt.grid(True)
plt.ylabel("y")
plt.xlabel("Time (sec)")
plt.show()

u1 = np.full((1,len(T)),2) #Create an array of 2's, equal to 2*step
u2 = np.sin(T)

T,yout_u1 = ct.forced_response(sys_tf,T,u1) # Response to input 1
T,yout_u2 = ct.forced_response(sys_tf,T,u2) # Response to input 2

plt.figure(2,figsize = (6,4))

plt.step(T,np.append(0,yout_u1[0:-1]))
plt.step(T,np.append(0,yout_u2[0:-1]))

plt.grid()
plt.xlabel("Time (sec)")
plt.ylabel("y")
plt.legend(["Input 1","Input 2 (sin)"])
plt.show()

linear_algebra/eig_orthogonal_matrtices.py
import numpy as np
from scipy.linalg import qr
n = 3
H = np.random.randn(n, n)
Q, _ = qr(H)
print (np.dot(Q,Q.T))
print (np.dot(Q.T,Q))
eigQ = np.linalg.eigvals(Q)
print(np.abs(eigQ))

linear_algebra/eig_skew_symmetric_matrtices.py
import numpy as np
N = 10
P = np.random.randint(-200,200,size=(N,N))
P_symm = (P - P.T)/2
lambdas, _ = np.linalg.eig(P_symm)
print(lambdas)

linear_algebra/eig_symmetric_matrtices.py
import numpy as np
N = 8 # Define matrix size
Create a random matrix P with values between -200 and 200 with size N x N
P = np.random.randint(-200, 200, size=(N, N))
Make P symmetric by averaging it with its transpose
P_symm = (P + P.T) / 2
Compute the eigenvalues of the symmetric matrix P_symm
lambdas = np.linalg.eigvals(P_symm)
print(lambdas)

% lyapunov/ctlyapunov_sol.m
A = [-1,1;-1,0]
Q = eye(2)
P = lyap(A',Q)
w = eig(P)

lyapunov/ctlyapunov_sol.py
import control as ct
import numpy as np
A = np.array([[-1,1],[-1,0]])
Q = np.identity(2)
P = ct.lyap(A.transpose(),Q)
print(P)
w = np.linalg.eigvals(P)# compute eigenvalues of P
print(f'eigenvalues of P: {w}')

% lyapunov/dtlyapunov_sol.m
A=[0 1 0; 0 0 1; 0.275 -0.225 -0.1]
Q = eye(3)
P = dlyap(A',Q)
eig(P)

lyapunov/dtlyapunov_sol.py
import control as ct
import numpy as np
from numpy.linalg import eig
A = np.array([[0,1,0],[0,0,1],[0.275,-0.225,-0.1]])
Q = np.identity(3)
P = ct.dlyap(A.transpose(),Q)
w,v = eig(P) # compute eigenvalue and eigenvectors of P
print(w) # print the eigenvalues

lyapunov/lyapunov_operator.py
import numpy as np
A = [[-1,1],[-1,0]]; I2=np.eye(2); AT=np.transpose(A)
L_A=np.kron(I2,AT)+np.kron(AT,I2)
eigLA=np.linalg.eigvals(L_A)
eigA=np.linalg.eigvals(A)
print('Eigenvalues of L_A:',eigLA)
print('Eigenvalues of A:',eigA)

% modeling/hdddsa.m
% Dual-stage HDD model
num_sector=420; % Number of sector
num_rpm=7200; % Number of RPM
Ts = 1/(num_rpm/60*num_sector); % Sampling time

% VCM
Kp_vcm=3.7976e+07;
omega_vcm=[0, 5300 ,6100 ,6500 ,8050 ,9600 ,14800 ,17400 ,21000 ,26000 ,26600 ,29000 ,32200 ,38300 ,43300 ,44800]*2*pi;
kappa_vcm=[1, -1.0 ,+0.1 ,-0.1 ,0.04 ,-0.7 ,-0.2 ,-1.0 ,+3.0 ,-3.2 ,2.1 ,-1.5 ,+2.0 ,-0.2 ,+0.3 ,-0.5];
zeta_vcm =[0, 0.02 ,0.04 ,0.02 ,0.01 ,0.03 ,0.01 ,0.02 ,0.02 ,0.012 ,0.007 ,0.01 ,0.03 ,0.01 ,0.01 ,0.01];

% PZT
omega_pzt=[14800 ,21500 ,28000 ,40200 ,42050,44400,46500 ,100000]*2*pi;
kappa_pzt=[-0.005,-0.01 ,-0.1 ,+0.8 ,0.3 ,-0.25 ,0.3 ,10.0];
zeta_pzt =[0.025 ,0.03 ,0.05 ,0.008 ,0.008 ,0.01 ,0.02 ,0.3];

%% LT(Low temp.) model: VCM: +4 % resonance shift from nominal model, PZT actuator: +6 % resonance shift from nominal model
% VCM
Sys_Pc_vcm_c1=0;
for i=1:length(omega_vcm)
	Sys_Pc_vcm_c1=Sys_Pc_vcm_c1+ss(tf([0,0,kappa_vcm(i)]*Kp_vcm,[1, 2*zeta_vcm(i)*0.8*omega_vcm(i)*1.04, (omega_vcm(i)*1.04)^2]));
	Sys_Pc_vcm_c1=ssbal(Sys_Pc_vcm_c1);
end

% PZT
Sys_Pc_pzt_c1=0;
for i=1:length(omega_pzt)
	Sys_Pc_pzt_c1=Sys_Pc_pzt_c1+ss(tf([0,0,kappa_pzt(i)],[1, 2*zeta_pzt(i)*0.8*omega_pzt(i)*1.06, (omega_pzt(i)*1.06)^2]));
	Sys_Pc_pzt_c1=ssbal(Sys_Pc_pzt_c1);
end
Sys_Pc_pzt_c1=Sys_Pc_pzt_c1/abs(freqresp(Sys_Pc_pzt_c1,0));

%% RT(Room temp.) model: Same as nominal models
% VCM
Sys_Pc_vcm_c2=0;
for i=1:length(omega_vcm)
	Sys_Pc_vcm_c2=Sys_Pc_vcm_c2+ss(tf([0,0,kappa_vcm(i)]*Kp_vcm,[1, 2*zeta_vcm(i)*omega_vcm(i), omega_vcm(i)^2]));
	Sys_Pc_vcm_c2=ssbal(Sys_Pc_vcm_c2);
end

% PZT
Sys_Pc_pzt_c2=0;
for i=1:length(omega_pzt)
	Sys_Pc_pzt_c2=Sys_Pc_pzt_c2+ss(tf([0,0,kappa_pzt(i)],[1, 2*zeta_pzt(i)*omega_pzt(i), omega_pzt(i)^2]));
	Sys_Pc_pzt_c2=ssbal(Sys_Pc_pzt_c2);
end
Sys_Pc_pzt_c2=Sys_Pc_pzt_c2/abs(freqresp(Sys_Pc_pzt_c2,0));

%% HT(High temp.) model: VCM: -4 % resonance shift from nominal model, PZT actuator: -6 % resonance shift from nominal model
% VCM
Sys_Pc_vcm_c3=0;
for i=1:length(omega_vcm)
	Sys_Pc_vcm_c3=Sys_Pc_vcm_c3+ss(tf([0,0,kappa_vcm(i)]*Kp_vcm,[1, 2*zeta_vcm(i)*1.2*omega_vcm(i)*0.96, (omega_vcm(i)*0.96)^2]));
	Sys_Pc_vcm_c3=ssbal(Sys_Pc_vcm_c3);
end

% PZT
Sys_Pc_pzt_c3=0;
for i=1:length(omega_pzt)
	Sys_Pc_pzt_c3=Sys_Pc_pzt_c3+ss(tf([0,0,kappa_pzt(i)],[1, 2*zeta_pzt(i)*1.2*omega_pzt(i)*0.94, (omega_pzt(i)*0.94)^2]));
	Sys_Pc_pzt_c3=ssbal(Sys_Pc_pzt_c3);
end
Sys_Pc_pzt_c3=Sys_Pc_pzt_c3/abs(freqresp(Sys_Pc_pzt_c3,0));

%% LT / PZT gain +5% (Case 4)
Sys_Pc_vcm_c4=Sys_Pc_vcm_c1;
Sys_Pc_pzt_c4=Sys_Pc_pzt_c1*1.05;

%% RT / PZT gain +5% (Case 5)
Sys_Pc_vcm_c5=Sys_Pc_vcm_c2;
Sys_Pc_pzt_c5=Sys_Pc_pzt_c2*1.05;

%% HT / PZT gain +5% (Case 6)
Sys_Pc_vcm_c6=Sys_Pc_vcm_c3;
Sys_Pc_pzt_c6=Sys_Pc_pzt_c3*1.05;

%% LT / PZT gain -5% (Case 7)
Sys_Pc_vcm_c7=Sys_Pc_vcm_c1;
Sys_Pc_pzt_c7=Sys_Pc_pzt_c1*0.95;

%% RT / PZT gain -5% (Case 8)
Sys_Pc_vcm_c8=Sys_Pc_vcm_c2;
Sys_Pc_pzt_c8=Sys_Pc_pzt_c2*0.95;

%% HT / PZT gain -5% (Case 9)
Sys_Pc_vcm_c9=Sys_Pc_vcm_c3;
Sys_Pc_pzt_c9=Sys_Pc_pzt_c3*0.95;

%% All plant
Sys_Pc_vcm_all=[Sys_Pc_vcm_c1;Sys_Pc_vcm_c2;Sys_Pc_vcm_c3;Sys_Pc_vcm_c4;Sys_Pc_vcm_c5;Sys_Pc_vcm_c6;Sys_Pc_vcm_c7;Sys_Pc_vcm_c8;Sys_Pc_vcm_c9];
Sys_Pc_pzt_all=[Sys_Pc_pzt_c1;Sys_Pc_pzt_c2;Sys_Pc_pzt_c3;Sys_Pc_pzt_c4;Sys_Pc_pzt_c5;Sys_Pc_pzt_c6;Sys_Pc_pzt_c7;Sys_Pc_pzt_c8;Sys_Pc_pzt_c9];

%% Cotrolled object (Discrete-time system)
% Case 1
Sys_Pd_vcm_c1=c2d(Sys_Pc_vcm_c1,Ts,'ZOH');
Sys_Pd_pzt_c1=c2d(Sys_Pc_pzt_c1,Ts,'ZOH');

% Case 2
Sys_Pd_vcm_c2=c2d(Sys_Pc_vcm_c2,Ts,'ZOH');
Sys_Pd_pzt_c2=c2d(Sys_Pc_pzt_c2,Ts,'ZOH');

% Case 3
Sys_Pd_vcm_c3=c2d(Sys_Pc_vcm_c3,Ts,'ZOH');
Sys_Pd_pzt_c3=c2d(Sys_Pc_pzt_c3,Ts,'ZOH');

% Case4
Sys_Pd_vcm_c4=c2d(Sys_Pc_vcm_c4,Ts,'ZOH');
Sys_Pd_pzt_c4=c2d(Sys_Pc_pzt_c4,Ts,'ZOH');

% Case 5
Sys_Pd_vcm_c5=c2d(Sys_Pc_vcm_c5,Ts,'ZOH');
Sys_Pd_pzt_c5=c2d(Sys_Pc_pzt_c5,Ts,'ZOH');

% Case 6
Sys_Pd_vcm_c6=c2d(Sys_Pc_vcm_c6,Ts,'ZOH');
Sys_Pd_pzt_c6=c2d(Sys_Pc_pzt_c6,Ts,'ZOH');

% Case 7
Sys_Pd_vcm_c7=c2d(Sys_Pc_vcm_c7,Ts,'ZOH');
Sys_Pd_pzt_c7=c2d(Sys_Pc_pzt_c7,Ts,'ZOH');

% Case 8
Sys_Pd_vcm_c8=c2d(Sys_Pc_vcm_c8,Ts,'ZOH');
Sys_Pd_pzt_c8=c2d(Sys_Pc_pzt_c8,Ts,'ZOH');

% Case 9
Sys_Pd_vcm_c9=c2d(Sys_Pc_vcm_c9,Ts,'ZOH');
Sys_Pd_pzt_c9=c2d(Sys_Pc_pzt_c9,Ts,'ZOH');

% All
Sys_Pd_vcm_all=[Sys_Pd_vcm_c1;Sys_Pd_vcm_c2;Sys_Pd_vcm_c3;Sys_Pd_vcm_c4;Sys_Pd_vcm_c5;Sys_Pd_vcm_c6;Sys_Pd_vcm_c7;Sys_Pd_vcm_c8;Sys_Pd_vcm_c9];
Sys_Pd_pzt_all=[Sys_Pd_pzt_c1;Sys_Pd_pzt_c2;Sys_Pd_pzt_c3;Sys_Pd_pzt_c4;Sys_Pd_pzt_c5;Sys_Pd_pzt_c6;Sys_Pd_pzt_c7;Sys_Pd_pzt_c8;Sys_Pd_pzt_c9];

%% Frequency response
f=logspace(1,log10(60e3),3000);
Fr_Pc_vcm_all=squeeze(freqresp(Sys_Pc_vcm_all,f*2*pi)).';
Fr_Pc_pzt_all=squeeze(freqresp(Sys_Pc_pzt_all,f*2*pi)).';
Fr_Pd_vcm_all=squeeze(freqresp(Sys_Pd_vcm_all,f*2*pi)).';
Fr_Pd_pzt_all=squeeze(freqresp(Sys_Pd_pzt_all,f*2*pi)).';

figure
subplot(211)
semilogx(f,20*log10(abs(Fr_Pc_vcm_all(:,1:7))))
hold on
semilogx(f,20*log10(abs(Fr_Pc_vcm_all(:,8:9))),'--')
hold off
title('P_{cv}');xlabel('Frequency [Hz]');ylabel('Gain [dB]');grid;axis([1e3 f(end) -90 10])
subplot(212)
semilogx(f,mod(angle(Fr_Pc_vcm_all(:,1:7))*180/pi+360,360)-360)
hold on
semilogx(f,mod(angle(Fr_Pc_vcm_all(:,8:9))*180/pi+360,360)-360,'--')
hold off
xlabel('Frequency [Hz]');ylabel('Phase [deg.]');grid;axis([1e3 f(end) -360 0]);yticks(-360:90:0)
legend('Case 1','Case 2','Case 3','Case 4','Case 5','Case 6','Case 7','Case 8','Case 9','Location','NorthWest')

figure
subplot(211)
semilogx(f,20*log10(abs(Fr_Pc_pzt_all(:,1:7))))
hold on
semilogx(f,20*log10(abs(Fr_Pc_pzt_all(:,8:9))),'--')
hold off
title('P_{cp}');xlabel('Frequency [Hz]');ylabel('Gain [dB]');grid;axis([1e3 f(end) -10 30])
subplot(212)
semilogx(f,angle(Fr_Pc_pzt_all(:,1:7))*180/pi)
hold on
semilogx(f,angle(Fr_Pc_pzt_all(:,8:9))*180/pi,'--')
hold off
xlabel('Frequency [Hz]');ylabel('Phase [deg.]');grid;axis([1e3 f(end) -180 180]);yticks(-180:90:180)
legend('Case 1','Case 2','Case 3','Case 4','Case 5','Case 6','Case 7','Case 8','Case 9','Location','NorthWest')

% modeling/hddpzt.m
% MATLAB code to generate the pzt-stage HDD model
num_sector=420; % Number of sector
num_rpm=7200; % Number of RPM
Ts = 1/(num_rpm/60*num_sector); % Sampling time

% PZT
omega_pzt=[14800 ,21500 ,28000 ,40200 ,42050,44400,46500 ,100000]*2*pi;
kappa_pzt=[-0.005,-0.01 ,-0.1 ,+0.8 ,0.3 ,-0.25 ,0.3 ,10.0];
zeta_pzt =[0.025 ,0.03 ,0.05 ,0.008 ,0.008 ,0.01 ,0.02 ,0.3];

Sys_Pc_pzt_c1=0;
for i=1:length(omega_pzt)
	Sys_Pc_pzt_c1=Sys_Pc_pzt_c1+tf([0,0,kappa_pzt(i)],[1, 2*zeta_pzt(i)*omega_pzt(i), (omega_pzt(i))^2]);
end
Sys_Pc_pzt_c1=Sys_Pc_pzt_c1/abs(freqresp(Sys_Pc_pzt_c1,0));

%% Frequency response
f=logspace(1,log10(60e3),3000);
Fr_Pc_pzt_c1=squeeze(freqresp(Sys_Pc_pzt_c1,f*2*pi)).';

figure
subplot(211)
semilogx(f,20*log10(abs(Fr_Pc_pzt_c1)))
title('P_{cp}');xlabel('Frequency [Hz]');ylabel('Gain [dB]');grid;axis([1e3 f(end) -10 30])
subplot(212)
semilogx(f,angle(Fr_Pc_pzt_c1)*180/pi)
xlabel('Frequency [Hz]');ylabel('Phase [deg.]');grid;axis([1e3 f(end) -180 180]);yticks(-180:90:180)

modeling/hddpzt.py
import numpy as np
import matplotlib.pyplot as plt
import control as ct

num_sector = 420 # Number of sector
num_rpm = 7200 # Number of RPM
Ts = 1 / (num_rpm / 60 * num_sector) # Sampling time

PZT
omega_pzt = np.array([14800, 21500, 28000, 40200, 42050,
 44400, 46500, 100000]) * 2 * np.pi
kappa_pzt = np.array([-0.005, -0.01, -0.1, +0.8, 0.3, -0.25, 0.3, 10.0])
zeta_pzt = np.array([0.025, 0.03, 0.05, 0.008, 0.008, 0.01, 0.02, 0.3])

s = ct.TransferFunction.s # Create a variable for the differentiation operator
Sys_Pc_pzt_c1 = 0 # Create an empty transfer function
for i in range(len(omega_pzt)):
 Sys_Pc_pzt_c1 += kappa_pzt[i] / (s**2 + 2 * zeta_pzt[i] * omega_pzt[i]
 * s + (omega_pzt[i]) ** 2) # Add the transfer functions
Sys_Pc_pzt_c1 /= Sys_Pc_pzt_c1(0) # Normalize the gain at zero frequency

Frequency response
f = np.logspace(1, np.log10(60e3), 3000)
w = f * 2 * np.pi

magPc_pzt, phase_Pc_pzt, omega_Pc_pzt = ct.freqresp(
 Sys_Pc_pzt_c1, w) # Get the frequency response

plt.figure()
plt.subplot(211)
plt.semilogx(f, 20*np.log10(magPc_pzt))
plt.title('P_{cp}')
plt.xlabel('Frequency [Hz]')
plt.ylabel('Gain [dB]')
plt.grid()
plt.axis([1000, f[-1], - 10, 30])
plt.subplot(212)
plt.semilogx(f, phase_Pc_pzt*180/np.pi)
plt.xlabel('Frequency [Hz]')
plt.ylabel('Phase [deg.]')
plt.grid()
plt.axis([1000, f[-1], - 180, 180])
plt.yticks(np.arange(-180, 270, 90))

% modeling/hddvcm.m
% MATLAB code to generate a single-stage HDD model
num_sector=420; % Number of sector
num_rpm=7200; % Number of RPM
Ts = 1/(num_rpm/60*num_sector); % Sampling time

% VCM
Kp_vcm=3.7976e+07; % VCM gain
omega_vcm=[0, 5300 ,6100 ,6500 ,8050 ,9600 ,14800 ,17400 ,21000 ,26000 ,26600 ,29000 ,32200 ,38300 ,43300 ,44800]*2*pi;
kappa_vcm=[1, -1.0 ,+0.1 ,-0.1 ,0.04 ,-0.7 ,-0.2 ,-1.0 ,+3.0 ,-3.2 ,2.1 ,-1.5 ,+2.0 ,-0.2 ,+0.3 ,-0.5];
zeta_vcm =[0, 0.02 ,0.04 ,0.02 ,0.01 ,0.03 ,0.01 ,0.02 ,0.02 ,0.012 ,0.007 ,0.01 ,0.03 ,0.01 ,0.01 ,0.01];

Sys_Pc_vcm_c1=0;
for i=1:length(omega_vcm)
	Sys_Pc_vcm_c1=Sys_Pc_vcm_c1+tf([0,0,kappa_vcm(i)]*Kp_vcm,[1, 2*zeta_vcm(i)*omega_vcm(i), (omega_vcm(i))^2]);
end

%% Frequency response
f=logspace(1,log10(60e3),3000);
Fr_Pc_vcm_c1=squeeze(freqresp(Sys_Pc_vcm_c1,f*2*pi)).';

figure
subplot(211)
semilogx(f,20*log10(abs(Fr_Pc_vcm_c1)))
title('P_{cv}');xlabel('Frequency [Hz]');ylabel('Gain [dB]');grid;axis([1e1 f(end) -90 100])
subplot(212)
semilogx(f,mod(angle(Fr_Pc_vcm_c1)*180/pi+360,360)-360)
xlabel('Frequency [Hz]');ylabel('Phase [deg.]');grid;axis([1e1 f(end) -360 0]);yticks(-360:90:0)
% if you want, you can save the images as follows:
% saveas(gcf,'images/hdd_pcvm_baseline.pdf')
% saveas(gcf,'images/hdd_pcvm_baseline.png')

modeling/hddvcm.py
import numpy as np
import matplotlib.pyplot as plt
from scipy import signal
import control as ct

num_sector = 420 # Number of sector
num_rpm = 7200 # Number of RPM
Ts = 1 / (num_rpm / 60 * num_sector) # Sampling time

VCM
Kp_vcm = 3.7976e+07 # VCM gain
omega_vcm = np.array([0, 5300, 6100, 6500, 8050, 9600, 14800, 17400,
 21000, 26000, 26600, 29000, 32200, 38300, 43300, 44800]) * 2 * np.pi
kappa_vcm = np.array([1, -1.0, +0.1, -0.1, 0.04, -0.7, -
 0.2, -1.0, +3.0, -3.2, 2.1, -1.5, +2.0, -0.2, +0.3, -0.5])
zeta_vcm = np.array([0, 0.02, 0.04, 0.02, 0.01, 0.03, 0.01,
 0.02, 0.02, 0.012, 0.007, 0.01, 0.03, 0.01, 0.01, 0.01])

Sys_Pc_vcm_c1 = ct.TransferFunction(
 [], [1]) # Create an empty transfer function
for i in range(len(omega_vcm)):
 Sys_Pc_vcm_c1 = Sys_Pc_vcm_c1 + ct.TransferFunction(np.array(
 [0, 0, kappa_vcm[i]]) * Kp_vcm, np.array([1, 2 * zeta_vcm[i] * omega_vcm[i], (omega_vcm[i]) ** 2]))

Frequency response
f = np.logspace(1, np.log10(60e3), 3000)
w = f * 2 * np.pi
magPc_vcm, phase_Pc_vcm, omega_Pc_vcm = ct.freqresp(
 Sys_Pc_vcm_c1, w) # Get the frequency response

plt.figure()
plt.subplot(211)
plt.semilogx(f, 20*np.log10(magPc_vcm))
plt.title('P_{cv}')
plt.xlabel('Frequency [Hz]')
plt.ylabel('Gain [dB]')
plt.grid()
plt.axis([10, f[-1], -90, 100])
plt.subplot(212)
plt.semilogx(f, np.mod(phase_Pc_vcm*180/np.pi+360, 360)-360)
plt.xlabel('Frequency [Hz]')
plt.ylabel('Phase [deg.]')
plt.grid()
plt.axis([10, f[-1], -360, 0])
plt.yticks(np.arange(-360, 90, 90))

% observer/motorobs.m
% State observer design for motion control in MATLAB
%% Continuous-time system model
% motor parameters
L = 1e-3; R = 1; J = 5e-5; B = 1e-4; K = 0.1;

% state-space model
A = [-R/L, 0, -K/L; 0, 0, 1; K/J, 0, -B/J];
B = [1/L; 0; 0];
C = [0, 1, 0];
D = [0];

% check original eigenvalues
eig(A)
%% Observer design
% check observability
O = obsv(A,C);
rank(O)

% desired poles for the observer
pole_des = [-500+250j, -500-250j, -1000];

% design observer by placing poles of A-LC
Lt = place(A.',C.',pole_des);
L = Lt.'

% check poles of estimator-error dynamics
est_poles = eig(A - L*C)

%% Simulation
% define augmented system to run the simulation
Aaug = [A, zeros(3,3); L*C, A-L*C];
Baug = [B;B];
Caug = [C, zeros(1,3)];
Daug = 0;
sys = ss(Aaug,Baug,Caug,Daug);

% define intial conditions
x0 = [10, 2, 10]'; xhat0 = [0, 0, 0]'; X0 = [x0; xhat0];

% define simulink parameters
Tend = 0.03; % simulation end time
amplitude = 10; % sin wave input amplitude
initpha = 0; % initial phase
freq = 600; % sin wave freq (rad/s)
t = 0:1e-4:Tend;

u = amplitude*sin(freq*t+initpha);

[Y,T,X] = lsim(sys,u,t,X0);

%% Performance verification
figure;
subplot(3,1,1); plot(t, X(:,1), t, X(:,4), '--','linewidth',1.5);
xlabel('time (sec)'); legend('$x_1 = i_a$', '$\hat x_1$','Interpreter','latex'); grid;
ylabel('x_1','Interpreter','latex')
title('States and their estimates');
subplot(3,1,2); plot(t, X(:,2), t, X(:,5), '--','linewidth',1.5);
xlabel('time (sec)'); legend('$x_2 = \theta$', '$\hat x_2$','Interpreter','latex'); grid;
ylabel('x_2','Interpreter','latex')
subplot(3,1,3); plot(t, X(:,3), t, X(:,6), '--','linewidth',1.5);
xlabel('time (sec)'); legend('$x_3 = \dot{\theta}$', '$\hat x_3$','Interpreter','latex'); grid;
ylabel('x_3','Interpreter','latex')

observer/motorobs.py
import numpy as np
import matplotlib.pyplot as plt
import control.matlab as ct

Continuous-time system model
L = 1e-3; R = 1; J = 5e-5; B = 1e-4; K = 0.1

A = np.array([[-R/L, 0, -K/L], [0, 0, 1], [K/J, 0, -B/J]])
B = np.array([1/L, 0, 0]).reshape((3, 1))
C = np.array([0, 1, 0]).reshape((1, 3))
D = np.array([0])

check original eigenvalues
print(np.linalg.eig(A))

Observer design
check observability
O = np.linalg.matrix_rank(np.concatenate(
 (C, C@A, C@(A@A)), axis=0))
print(O)
or you can use np.block
O = np.linalg.matrix_rank(np.block([[C], [C@A], [C@(A@A)]]))
print(O)

pole_des = np.array([-500+250j, -500-250j, -1000])

design observer by placing poles of A-LC
L = ct.place(A.T, C.T, pole_des).T
est_poles = np.linalg.eig(A - L@C)

Simulation
Aaug = np.block([A, np.zeros((3, 3))])
Aaug = np.block([[Aaug], [np.block([L@C, A - L@C])]])
Baug = np.block([[B], [B]])
Caug = np.block([C, np.zeros((1, 3))])
Daug = np.array([0])
Aaug = np.concatenate((A, np.zeros((3, 3))), axis=1)
Aaug = np.concatenate((Aaug, np.concatenate(
(L@C, A - L@C), axis=1)), axis=0)
Baug = np.concatenate((B, B), axis=0)
Caug = np.concatenate((C, np.zeros((1, 3))), axis=1)
Daug = np.array([0])

sys = ct.ss(Aaug, Baug, Caug, Daug)

x0 = np.array([10, 2, 10]); xhat0 = np.array([0, 0, 0]); X0 = np.array([x0, xhat0]).reshape((6, 1))

Tend = 0.03; amplitude = 10; initpha = 0; freq = 600
t = np.arange(0, Tend, 1e-4)

u = amplitude * np.sin(freq * t + initpha)

[Y, T, X] = ct.lsim(sys, u, t, X0)

plt.figure()
plt.subplot(3, 1, 1)
plt.plot(t, X[:, 0], t, X[:, 3], '--', linewidth=1.5)
plt.xlabel('time (sec)')
plt.legend(['$x_1 = i_a$', '$\hat x_1$'], fontsize=16)
plt.grid()
plt.ylabel('x_1', fontsize=16)
plt.title('States and their estimates')
plt.subplot(3, 1, 2)
plt.plot(t, X[:, 1], t, X[:, 4], '--', linewidth=1.5)
plt.xlabel('time (sec)')
plt.legend(['$x_2 = \\theta$', '$\hat x_2$'], fontsize=16)
plt.grid()
plt.ylabel('x_2', fontsize=16)
plt.subplot(3, 1, 3)
plt.plot(t, X[:, 2], t, X[:, 5], '--', linewidth=1.5)
plt.xlabel('time (sec)')
plt.legend(['$x_3 = \dot{\\theta}$', '$\hat x_3$'], fontsize=16)
plt.grid()
plt.ylabel('x_3', fontsize=16)
plt.show()

% observer/simple2ndorder_obs.m
A = [0 1;-4 -0.2];
B = [0 1]';
C = [1 0];
sys = ss(A,B,C,0);

eig(A)

L = place(A',C',[-2,-3])'

eig(A-L*C)

observer/simple2ndorder_obs.py
import control as ct
import numpy as np
A = np.array([[0, 1],[-4, -0.2]])
C = np.array([[1], [0]]).T
L = ct.place(A.T,C.T,[-2, -3]).T
print(L)

% probability_review/sum_2rv.m
X1 = rand(1,1e5);
X2 = rand(1,1e5);
X3 = rand(1,1e5);
Z = X1 + X2;
[fz,x] = hist(Z,100);
w_fz = x(end)/length(fz);
fz = fz/sum(fz)/w_fz;
figure, bar(x,fz)
xlabel 'x'; ylabel 'p_Z(x)';

probability_review/sum_2rv.py
import numpy as np
import matplotlib.pyplot as plt

Generate three random arrays of size 1e5
X1 = np.random.rand(1, int(1e5))
X2 = np.random.rand(1, int(1e5))
X3 = np.random.rand(1, int(1e5))

Compute the sum of X1 and X2
Z = X1 + X2

Compute the histogram of Z with 100 bins
fz, x = np.histogram(Z, bins=100)

Normalize the histogram by the area and the bin width
w_fz = x[-1] / len(fz)
fz = fz / np.sum(fz) / w_fz

Plot the histogram as a bar chart
plt.bar(x[:-1], fz, width=w_fz)
plt.xlabel('x')
plt.ylabel('$p_Z(x)$')
plt.show()

% probability_review/sum_3rv.m
X1 = rand(1,1e5); X2 = rand(1,1e5); X3 = rand(1,1e5);
Z = X1 + X2 + X3;
[fz,x] = hist(Z,100);
w_fz = x(end)/length(fz);
fz = fz/sum(fz)/w_fz;
figure, bar(x,fz)
xlabel 'x'; ylabel 'p_Z(x)';

probability_review/sum_3rv.py
import numpy as np
import matplotlib.pyplot as plt

Generate three random arrays of size 1e5
X1 = np.random.rand(1, int(1e5))
X2 = np.random.rand(1, int(1e5))
X3 = np.random.rand(1, int(1e5))

Compute the sum of the arrays
Z = X1 + X2 + X3

Compute the histogram of Z with 100 bins
fz, x = np.histogram(Z, bins = 100)

Normalize the histogram by the area and the bin width
w_fz = x[-1] / len(fz)
fz = fz / np.sum(fz) / w_fz

Plot the histogram as a bar chart
plt.bar(x[:-1], fz, width = w_fz)
plt.xlabel('x')
plt.ylabel('$p_Z(x)$')
plt.show()

% ssdescription/afm_ss.m
m1 = 8e-14;
m2 = 3e-13;
b1 = 2.19e-8;
b2 = 9.43e-10;
k1 = 3e-2;
k2 = 7e-3;
A = [0 0 1 0; 0 0 0 1; -k1/m1 k1/m1 -b1/m1 b1/m1; k1/m2 -(k1+k2)/m2 b1/m2 -(b1+b2)/m2];
B = [0; 0; 1/m1; -1/m2];
C = [1 0 0 0];
D = 0;
sys = ss(A,B,C,D)
[num,den] = ss2tf(A,B,C,D);
sys_tf = tf(num,den)
figure, pzmap(sys_tf)
figure, bodeplot(sys_tf)

% ssdescription/hddvcm_ss.m
Sys_Pc_vcm_c1=ss(0);
for i=1:length(omega_vcm)
	Sys_Pc_vcm_c1=Sys_Pc_vcm_c1+Kp_vcm*ss(...
 [0 1; -omega_vcm(i)^2 -2*zeta_vcm(i)*omega_vcm(i)],...
 [0; kappa_vcm(i)],...
 [1 0],...
 0);
end

% ssdescription/hddvcm_tf.m
Kp_vcm=3.7976e+07; % VCM gain
omega_vcm=[0, 5300 ,6100 ,6500 ,8050 ,9600 ,14800 ,17400 ,21000 ,26000 ,26600 ,29000 ,32200 ,38300 ,43300 ,44800]*2*pi;
kappa_vcm=[1, -1.0 ,+0.1 ,-0.1 ,0.04 ,-0.7 ,-0.2 ,-1.0 ,+3.0 ,-3.2 ,2.1 ,-1.5 ,+2.0 ,-0.2 ,+0.3 ,-0.5];
zeta_vcm =[0, 0.02 ,0.04 ,0.02 ,0.01 ,0.03 ,0.01 ,0.02 ,0.02 ,0.012 ,0.007 ,0.01 ,0.03 ,0.01 ,0.01 ,0.01];

Sys_Pc_vcm_c1=0;
for i=1:length(omega_vcm)
	Sys_Pc_vcm_c1=Sys_Pc_vcm_c1+tf([0,0,kappa_vcm(i)]*Kp_vcm,[1, 2*zeta_vcm(i)*omega_vcm(i), (omega_vcm(i))^2]);
end

% ssdescription/msd.m
m = 1;
k = 2;
b = 1;
A = [0 1; -k/m -b/m];
B = [0; 1/m];
C = [1 0];
D = 0;
sys = ss(A,B,C,D) % state space representation
[num,den] = ss2tf(A,B,C,D); % the function ss2tf provides the transfer function of a state-space model
sys_tf = tf(num,den)

ssdescription/msd.py
import control as ct
import numpy as np
m = 1
k = 2
b = 1
A = np.array([[0,1],[-k/m,-b/m]])
B = np.array([[0], [1/m]])
C = np.array([1,0])
D = np.array([0])
sys = ct.ss(A,B,C,D) # state space representation
print(sys)
sys_tf = ct.ss2tf(sys)
print(sys_tf)

ssdescription/vehicle_steer_linear.py
import numpy as np
import matplotlib.pyplot as plt
import control.matlab as ct
from scipy.integrate import odeint

Vehicle steering: bicycle model
Accuracy of linearization
a = 1.799/2 # Length from rear wheels to center of mass
b = 1.799 # Length of the car
v_0 = 10 # Initial velocity in meters per second

Define the nonlinear system

def f(x, t, u):
 y = x[0]
 theta = x[1]
 dydt = v_0*np.sin(np.arctan(a*np.tan(u)/b)+theta)
 dthetadt = v_0*np.sin(np.arctan(a*np.tan(u)/b))/a
 dxdt = [dydt, dthetadt]
 return dxdt

def h(x, u):
 return x

Set simulation time and initial conditions
tspan = [0, 10]
x0 = [0, 0]

Define the state-space model of the vehicle with the output being only the position
A = np.array([[0, v_0], [0, 0]])
B = np.array([a*v_0/b, v_0/b]).reshape(-1, 1)
C = np.array([1, 0])
D = np.array([0])

Effect of varying input magnitudes
Simulate the nonlinear system using odeint solver
Ugain = [0.05, 0.1, 0.5, 1]
t = np.linspace(tspan[0], tspan[1], 1000)
Y = np.zeros((len(t), len(Ugain)))
Ylinear = Y.copy()
for ii in range(len(Ugain)):
 # Define input signal
 # Sinusoidal input signal with a frequency of 1 Hz and an amplitude of 0.1 radians
 u = Ugain[ii]*np.sin(2*np.pi*1*t)
 for jj in range(len(t)):
 # Simulate the nonlinear system using odeint solver
 x = odeint(f, x0, [t[jj-1],t[jj]], args=(u[jj],))
 x0 = x[1]
 Y[jj, ii] = x[1][0]

 # Simulate the linearized system
 x0 = [0, 0]
 Ylinear[:, ii], _, _ = ct.lsim(ct.ss(A, B, C, D), u, t, x0)
 # or use ct.forced_response from plain control instead of control.matlab

Plot the results
plt.figure()
plt.subplot(411)
plt.plot(t, Y[:, 0], t, Ylinear[:, 0], 'r--')
plt.title('Response to input at 1 Hz and magnitude 0.05 radians')
plt.ylabel('Position y (m)')
plt.legend(['nonlinear model', 'linearized model'], loc='upper left')
plt.subplot(412)
plt.plot(t, Y[:, 1], t, Ylinear[:, 1], 'r--')
plt.title('Response to input at 1 Hz and magnitude 0.1 radians')
plt.ylabel('Position y (m)')
plt.legend(['nonlinear model', 'linearized model'], loc='upper left')
plt.subplot(413)
plt.plot(t, Y[:, 2], t, Ylinear[:, 2], 'r--')
plt.title('Response to input at 1 Hz and magnitude 0.5 radians')
plt.ylabel('Position y (m)')
plt.legend(['nonlinear model', 'linearized model'], loc='upper left')
plt.subplot(414)
plt.plot(t, Y[:, 3], t, Ylinear[:, 3], 'r--')
plt.title('Response to input at 1 Hz and magnitude 1 radians')
plt.ylabel('Position y (m)')
plt.legend(['nonlinear model', 'linearized model'], loc='upper left')
plt.xlabel('Time (s)')
plt.show()

Effect of varying input frequencies
Simulate the nonlinear system using odeint solver

FreqVect = [1,5,10,30]
t = np.linspace(tspan[0],tspan[1],1000)
Y = np.zeros((len(t),len(FreqVect)))
Ylinear = Y.copy()
for ii in range(len(FreqVect)):
 # Define input signal
 u = 0.05*np.sin(2*np.pi*FreqVect[ii]*t)
 # Simulate the nonlinear system using odeint solver
 for jj in range(len(t)):
 # Simulate the nonlinear system using odeint solver
 x = odeint(f, x0, [t[jj-1],t[jj]], args=(u[jj],))
 x0 = x[1]
 Y[jj, ii] = x[1][0]

 # Simulate the linearized system
 x0 = [0, 0]
 Ylinear[:, ii], _, _ = ct.lsim(ct.ss(A, B, C, D), u, t, x0)
 # exercise: use control.forced_response instead to obtain the equivalent result

% ssdescription/vehicle_steer_linearization.m
% Vehicle steering: bicycle model
% Accuracy of linearization
a = 1.799/2; % Length from rear wheels to center of mass
b = 1.799; % Length of the car
v_0 = 10; % Initial velocity in meters per second

%% nonlinear system
% Define the nonlinear system
f = @(x,u) [v_0*sin(atan(a*tan(u)/b)+x(2)); v_0*sin(atan(a*tan(u)/b))/a];
h = @(x,u) x;

% Set simulation time and initial conditions
tspan = [0 10];
x0 = [0 0];

%% Linearized System
% Define the state-space model of the vehicle
A = [0 v_0; 0 0];
B = [a*v_0/b v_0/b]';
C = [1 0; 0 1];
D = [0; 0];

sys = ss(A,B,C,D);

sys_y = sys(1);
[num_y, den_y] = tfdata(sys_y);
G_y = tf(num_y, den_y);

%% Effect of input scaling
Ugain = [0.05,0.1,0.5,1];
t = linspace(tspan(1),tspan(2),1000);
Y = zeros(length(t),length(Ugain));
Ylinear = Y;
for ii = 1:length(Ugain)
 % Define input signal
 u = @(t) Ugain(ii)*sin(2*pi*1*t); % Sinusoidal input signal with a frequency of 1 Hz and an amplitude of 0.1 radians

 % Simulate the nonlinear system using ode45 solver
 [t,x] = ode45(@(t,x) f(x,u(t)), t, x0);

 Y(:,ii) = x(:,1);

 % Simulate the linearized system
 Ylinear(:,ii) = lsim(sys_y,u(t),t,x0);
end

% Plot the results
figure;
subplot(411)
plot(t, Y(:,1), t, Ylinear(:,1), 'r--');
title('Response to input at 1 Hz and magnitude 0.05 radians');
ylabel('Position y (m)');
legend('nonlinear model','linearized model','Location','northwest')
subplot(412)
plot(t, Y(:,2), t, Ylinear(:,2), 'r--');
title('Response to input at 1 Hz and magnitude 0.1 radians');
ylabel('Position y (m)');
subplot(413)
plot(t, Y(:,3), t, Ylinear(:,3), 'r--');
title('Response to input at 1 Hz and magnitude 0.5 radians');
ylabel('Position y (m)');
subplot(414)
plot(t, Y(:,4), t, Ylinear(:,4), 'r--');
xlabel('Time (s)');
ylabel('Position y (m)');
title('Response to input at 1 Hz and magnitude 1 radians');

%% Effect of input frequency variation
FreqVect = [1,5,10,30];
t = linspace(tspan(1),tspan(2),1000);
Y = zeros(length(t),length(FreqVect));
Ylinear = Y;
for ii = 1:length(FreqVect)
 % Define input signal
 u = @(t) 0.05*sin(2*pi*FreqVect(ii)*t);

 % Simulate the nonlinear system using ode45 solver
 [t,x] = ode45(@(t,x) f(x,u(t)), t, x0);

 Y(:,ii) = x(:,1);

 % Simulate the linearized system
 Ylinear(:,ii) = lsim(sys_y,u(t),t,x0);
end

% Plot the results
figure;
subplot(411)
plot(t, Y(:,1), t, Ylinear(:,1), 'r--');
title(['Response to input at ',num2str(FreqVect(1)), ' Hz and magnitude 0.05 radians']);
ylabel('Position y (m)');
legend('nonlinear model','linearized model','Location','northwest')
subplot(412)
plot(t, Y(:,2), t, Ylinear(:,2), 'r--');
title(['Response to input at ',num2str(FreqVect(2)), ' Hz and magnitude 0.05 radians']);
ylabel('Position y (m)');
subplot(413)
plot(t, Y(:,3), t, Ylinear(:,3), 'r--');
title(['Response to input at ',num2str(FreqVect(3)), ' Hz and magnitude 0.05 radians']);
ylabel('Position y (m)');
subplot(414)
plot(t, Y(:,4), t, Ylinear(:,4), 'r--');
xlabel('Time (s)');
ylabel('Position y (m)');
title(['Response to input at ',num2str(FreqVect(4)), ' Hz and magnitude 0.05 radians']);

% ssrealization/vehicle_steer_ocf.m
a = 1.799/2; % Length from rear wheels to center of mass
b = 1.799; % Length of the car
v_0 = 10; % Initial velocity in meters per second

%% Linearized System
% Define the state-space model of the vehicle
A = [0 v_0; 0 0];
B = [a*v_0/b v_0/b]';
C = [1 0; 0 1];
D = [0; 0];

sys = ss(A,B,C,D);

% Choosing y as the single output
sys_y = sys(1);

% Transfer function by analysis
Gy = v_0/b*tf([0 a v_0],[1 0 0])

% Computed transfer function
[num_y, den_y] = tfdata(sys_y);
G_y = tf(num_y, den_y)

ssrealization/vehicle_steer_ocf.py
import numpy as np
import control as ct

a = 1.799/2 # Length from rear wheels to center of mass
b = 1.799 # Length of the car
v_0 = 10 # Initial velocity in meters per second

Linearized System
Define the state-space model of the vehicle
A = np.array([[0, v_0], [0, 0]])
B = np.array([a*v_0/b, v_0/b])
C = np.array([[1, 0], [0, 1]])
D = np.array([[0], [0]])

sys = ct.StateSpace(A, B, C, D)

Choosing y as the single output
C1 = np.array([[1, 0]])
D1 = np.array([0])
sys_y = ct.StateSpace(A, B, C1, D1)

Transfer function by analysis
Gy = v_0/b*ct.TransferFunction([0, a, v_0], [1, 0, 0])
print(Gy)

Computed transfer function
G_y = ct.ss2tf(sys_y.A, sys_y.B, sys_y.C, sys_y.D)
print(G_y)

sssolution/number_e.py
Python code illustrating the convergence of the infinite series to the irrational number e
import math
import matplotlib.pyplot as plt
print(math.e)
N = 10
eapprox = [sum(1/math.factorial(k) for k in range(n)) for n in range(1,N+1)]

print(eapprox)

plt.figure()
plt.scatter([i for i in range(N)], eapprox, color='r')
plt.plot(range(N), [math.e]*N, 'b.')
plt.xlim(0, N)
plt.ylim(0, 3)
plt.xlabel('n')
plt.xticks(range(N+1))
plt.ylabel('Convergence of $\sum_{n=0}^{\infty}{1}/{n!}$')

% state_feedback/dtn3_example.m
A = [1,1,-2;0,1,1;0,0,1];
B = [1;0;1];
p = [0;0.1;0.2];
K = place(A, B, p)

state_feedback/dtn3_example.py
import control as ct
import numpy as np
A = np.array([[1,1,-2],[0,1,1],[0,0,1]])
B = np.array([[1],[0],[1]])
p = [0,0.1,0.2]
K = ct.place(A, B, p)
print(K)

